Skip to main content
Log in

Vanishing Diffusion Limits and Long Time Behaviour of a Class of Forced Active Scalar Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate the properties of an abstract family of advection diffusion equations in the context of the fractional Laplacian. Two independent diffusion parameters enter the system, one via the constitutive law for the drift velocity and one as the prefactor of the fractional Laplacian. We obtain existence and convergence results in certain parameter regimes and limits. We study the long time behaviour of solutions to the general problem and prove the existence of a unique global attractor. We apply the results to two particular active scalar equations arising in geophysical fluid dynamics, namely the surface quasigeostrophic equation and the magnetogeostrophic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We point out that most of the results given in our work hold for \(d{\,\geqq \,}2\).

  2. Such a mean zero assumption is common in many physical models which include SQG equation and MG equation; see [9] and [17], for example.

  3. \(L^\infty \) is the critical Lebesgue space with respect to the natural scaling for both the critically diffusive SQG and MG\(^0\) equations.

References

  1. Agmon, S., Nirenberg, L.: Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space. Commun. Pure Appl. Math. 20, 207–229, 1967

    Article  MathSciNet  Google Scholar 

  2. Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, 2011

  3. Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930, 2010

    Article  MathSciNet  Google Scholar 

  4. Chepyzhov, V.V., Conti, M., Pata, V.: A minimal approach to the theory of global attractors. Discrete Contin. Dyn. Syst. 32, 2079–2088, 2012

    Article  MathSciNet  Google Scholar 

  5. Cheskidov, A., Dai, M.: The existence of a global attractor for the forced critical surface quasi-geostrophic equation in \(L^2\). J. Math. Fluid Mech. 2017. https://doi.org/10.1007/s00021-017-0324-7

  6. Constantin, P., Foias, C.: Global Lyapunov exponents, Kaplan–Yorke formulas and the dimension of the attractors for 2D Navier–Stokes equations. Commun. Pure Appl. Math. 38(1), 1–27, 1985

    Article  ADS  Google Scholar 

  7. Constantin, P., Foias, C.: Navier–Stokes equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, 1988

  8. Constantin, P., Majda, A.J., Tabak, E.: Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7(6), 1495–1533, 1994

    Article  ADS  MathSciNet  Google Scholar 

  9. Constantin, P., Tarfulea, A., Vicol, V.: Long time dynamics of forced critical SQG. Commun. Math. Phys. 335, 93–141, 2014

    Article  ADS  MathSciNet  Google Scholar 

  10. Constantin, P., Zelati, M.C., Vicol, V.: Uniformly attracting limit sets for the critically dissipative SQG equation. Nonlinearity 29(2), 298–318, 2016

    Article  ADS  MathSciNet  Google Scholar 

  11. Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geomet. Funct. Anal. 22(5), 1289–1321, 2012

    Article  MathSciNet  Google Scholar 

  12. Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. (3) 249, 511–528, 2004

    Article  ADS  MathSciNet  Google Scholar 

  13. Córdoba, D., Faraco, D., Gancedo, F.: Lack of uniqueness for weak solutions of the incompressible porous media equation. Arch. Ration. Mech. Anal. 200(3), 725–746, 2011

    Article  MathSciNet  Google Scholar 

  14. Córdoba, D., Gancedo, F., Orive, R.: Analytical behavior of two-dimensional incompressible flow in porous media. J. Math. Phys. 48(6), 065206, 19, 2007

    Article  MathSciNet  Google Scholar 

  15. Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369, 1989

    Article  MathSciNet  Google Scholar 

  16. Friedlander, S., Suen, A.: Existence, uniqueness, regularity and instability results for the viscous magneto-geostrophic equation. Nonlinearity 28(9), 3193–3217, 2015

    Article  ADS  MathSciNet  Google Scholar 

  17. Friedlander, S., Suen, A.: Solutions to a class of forced drift-diffusion equations with applications to the magneto-geostrophic equations. Ann. PDE 4(2), 1–34, 2018

    Article  MathSciNet  Google Scholar 

  18. Friedlander, S., Suen, A.: Wellposedness and convergence of solutions to a class of forced non-diffusion equations. J. Math. Fluid Mech. 21(4), 21–50, 2019

    Article  Google Scholar 

  19. Friedlander, S., Vicol, V.: Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(2), 283–301, 2011

    Article  ADS  MathSciNet  Google Scholar 

  20. Friedlander, S., Vicol, V.: On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations. Nonlinearity 24(11), 3019–3042, 2011

    Article  ADS  MathSciNet  Google Scholar 

  21. Friedlander, S., Vicol, V.: Higher regularity of Hölder continuous solutions of parabolic equations with singular drift velocities. J. Math. Fluid Mech. 14, 255–266, 2012

    Article  ADS  MathSciNet  Google Scholar 

  22. Friedlander, S., Rusin, W., Vicol, V.: On the supercritically diffusive magneto-geostrophic equations. Nonlinearity 25(11), 3071–3097, 2012

    Article  ADS  MathSciNet  Google Scholar 

  23. Friedlander, S., Rusin, W., Vicol, V.: The magnetogeostrophic equations: a survey. Proceedings of the St. Petersburg Mathematical Society, Volume XV: Advances in Mathematical Analysis of Partial Differential Equations, Vol. 232 (Eds. Apushkinskaya D. and Nazarov A.I.) AMS Translations, 53–78, 2014

  24. Hoang, L.T., Olson, E.J., Robinson, J.C.: On the continuity of global attractors. Proc. Am. Math. Soc. 143(10), 4389–4395, 2015

    Article  MathSciNet  Google Scholar 

  25. Held, I.M., Pierrehumbert, R.T., Garner, S.T., Swanson, K.L.: Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1–20, 1995

    Article  ADS  MathSciNet  Google Scholar 

  26. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167(3), 445–453, 2007

    Article  ADS  MathSciNet  Google Scholar 

  27. Kukavica, I., Vicol, V.: On the radius of analyticity of solutions to the three-dimensional Euler equations. Proc. Am. Math. Soc. 137(2), 669–677, 2009

    Article  MathSciNet  Google Scholar 

  28. Levermore, C.D., Oliver, M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133(2), 321–339, 1997

    Article  ADS  MathSciNet  Google Scholar 

  29. Miura, H.: Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space. Commun. Math. Phys. 267(1), 141–157, 2006

    Article  ADS  MathSciNet  Google Scholar 

  30. Moffatt, H.K.: Magnetostrophic turbulence and the geodynamo. IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, Nagoya, Japan, September, 11–14, 2006, volume 4 of IUTAM Bookser (Eds Y. Kaneda) Springer, Dordrecht, 339–346, 2008

  31. Moffatt, H.K., Loper, D.E.: The magnetostrophic rise of a buoyant parcel in the earth’s core. Geophys. J. Int. 117(2), 394–402, 1994

    Article  ADS  Google Scholar 

  32. Ohkitani, K., Yamada, M.: Inviscid and inviscid-limit behaviour of a surface quasigeostrophic flow. Phys. Fluids 9(4), 876–882, 1997

    Article  ADS  MathSciNet  Google Scholar 

  33. Paicu, M., Vicol, V.: Analyticity and Gevrey-class regularity for the second-grade fluid equations. J. Math. Fluid Mech. 13(4), 533–555, 2011

    Article  ADS  MathSciNet  Google Scholar 

  34. Robinson, J. C.: Attractors and finite-dimensional behaviour in the 2D Navier–Stokes equations. ISRN Math. Anal., Art. ID 291823, 29, 2013

  35. Stein, E.M.: Singular Integrals and Differentiability Properties of Function. Princeton University Press, Princeton 1970

    MATH  Google Scholar 

  36. Temam, R: Navier–Stokes equations. Theory and Numerical Analysis. AMS Chelsea Publishing, Providence, RI, 2001

  37. Yolcu, S.Y., Yolcu, T.: Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain. Commun. Contemp. Math., 15, 1250048, 2013

  38. Ziemer, W.: Weakly Differentiable Functions. Springer, Berlin 1989

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their valuable comments and suggestions which helped to improve the manuscript. S. Friedlander is supported by NSF DMS-1613135 and A. Suen is supported by the Hong Kong General Research Fund (GRF) Grant Project number 18300720.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Suen.

Additional information

Communicated by V. Vicol.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedlander, S., Suen, A. Vanishing Diffusion Limits and Long Time Behaviour of a Class of Forced Active Scalar Equations. Arch Rational Mech Anal 240, 1431–1485 (2021). https://doi.org/10.1007/s00205-021-01638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01638-3

Navigation