Skip to main content
Log in

Solutions to a Class of Forced Drift-Diffusion Equations with Applications to the Magneto-Geostrophic Equations

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

We prove the global existence of classical solutions to a class of forced drift-diffusion equations with \(L^2\) initial data and divergence free drift velocity \(\{u^\nu \}_{\nu _\ge 0}\subset L^\infty _t BMO^{-1}_x\), and we obtain strong convergence of solutions as the viscosity \(\nu \) vanishes. We then apply our results to a family of active scalar equations which includes the three dimensional magneto-geostrophic \(\{\hbox {MG}^\nu \}_{\nu \ge 0}\) equation that has been proposed by Moffatt in the context of magnetostrophic turbulence in the Earth’s fluid core. We prove the existence of a compact global attractor \(\{\mathcal {A}^\nu \}_{\nu \ge 0}\) in \(L^2(\mathbb {T}^3)\) for the \(\hbox {MG}^\nu \) equations including the critical equation where \(\nu =0\). Furthermore, we obtain the upper semicontinuity of the global attractor as \(\nu \) vanishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aurnou, J.M.: Rotating convective turbulence in earth and planetary cores. Phys. Earth Planet. Inter. 246, 52–71 (2015)

    Article  ADS  Google Scholar 

  2. Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften 343. Springer (2011)

  3. Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    Article  MathSciNet  Google Scholar 

  4. Chandrasekhar, S.: The instability of a layer of fluid heated from below and subject to the simultaneous action of a magnetic field and rotation. Proc. R. Soc. Lond. A Math. Phys. Sci. 225, 173–184 (1954)

    Article  ADS  Google Scholar 

  5. Chen, Q., Miao, C., Zhang, Z.: A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation. Commun. Math. Phys. 271(3), 821–838 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cheskidov, A.: Global attractors of evolutionary systems. J. Dyn. Differ. Equ. 21, 249–268 (2009)

    Article  MathSciNet  Google Scholar 

  7. Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21, 1233–1252 (2008)

    Article  MathSciNet  Google Scholar 

  8. Cheskidov, A., Dai, M.: The existence of a global attractor for the forced critical surface quasi-geostrophic equation in \(L^2\). J. Math. Fluid Mech. (2017). https://doi.org/10.1007/s00021-017-0324-7

    Article  MATH  Google Scholar 

  9. Cheskidov, A., Foias, : On global attractors of the 3D Navier–Stokes equations. J. Differ. Equ. 231(2), 714–754 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Constantin, P., Coti-Zelati, M., Vicol, V.: Uniformly attracting limit sets for the critically dissipative SQG equation. Nonlinearity 29, 298–318 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Constantin, P., Foias, C.: Navier–Stokes Equation. University of Chicago Press, Chicago (1989)

    MATH  Google Scholar 

  12. Constantin, P., Tarfulea, A., Vicol, V.: Absence of anomalous dissipation of energy in forced two dimensional fluid equations. Arch. Ration. Mech. Anal. 212, 875–903 (2014)

    Article  MathSciNet  Google Scholar 

  13. Constantin, P., Tarfulea, A., Vicol, V.: Long time dynamics of forced critical SQG. Commun. Math. Phys. 335, 93–141 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22, 1289–1321 (2012)

    Article  MathSciNet  Google Scholar 

  15. Constantin, P., Wu, J.: Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations. Ann. Inst. H. Poincaré Anal. Non Linaire 26(1), 159–180 (2009)

    Article  ADS  Google Scholar 

  16. Danchin, R.: Fourier Analysis Methods for PDEs. Lecture Notes, 14 November (2005)

  17. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  18. Dong, H.: Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness. Discrete Contin. Dyn. Syst. 26, 1197–1211 (2010)

    Article  MathSciNet  Google Scholar 

  19. Foldes, J., Friedlander, S., Glatt-Holtz, N., Richards, G.: Asymptotic analysis for randomly forced MHD. SIAM Math. Anal. 49(6), 4440–4469 (2017)

    Article  MathSciNet  Google Scholar 

  20. Friedlander, S., Pavlović, N., Vicol, V.: Nonlinear instability for the critically dissipative quasi-geostrophic equation. Commun. Math. Phys. 292, 797–810 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Friedlander, S., Rusin, W., Vicol, V.: On the supercritically diffusive magneto-geostrophic equations. Nonlinearity 25(11), 3071–3097 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. Friedlander, S., Rusin, W., Vicol, V.: The magneto-geostrophic equations: a survey. In: Apushkinskaya, D., Nazarov, A.I. (eds.) Proceedings of the St. Petersburg Mathematical Society, Volume XV: Advances in Mathematical Analysis of Partial Differential Equations, pp. 53–78 (2014)

  23. Friedlander, S., Suen, A.: Existence, uniqueness, regularity and instability results for the viscous magneto-geostrophic equation. Nonlinearity 28(9), 3193–3217 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Friedlander, S., Vicol, V.: Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(2), 283–301 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  25. Friedlander, S., Vicol, V.: On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations. Nonlinearity 24(11), 3019–3042 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. Friedlander, S., Vicol, V.: Higher regularity of Hölder continuous solutions of parabolic equations with singular drift velocities. J. Math. Fluid Mech. 14(2), 255–266 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hoang, L.T., Olson, E.J., Robinson, J.C.: On the continuity of global attractors. Proc. Am. Math. Soc. 143(10), 4389–4395 (2015)

    Article  MathSciNet  Google Scholar 

  28. King, E.M., Aurnou, J.M.: Magnetostrophic balance as the optimal state for turbulent magneto convection. PNAS 112(4), 990–994 (2015)

    Article  ADS  Google Scholar 

  29. Kiselev, A., Nazarov, F.: A variation on a theme of Caffarelli and Vasseur. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 370, 58–72 (2009). 220

    MATH  Google Scholar 

  30. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. Lemarié-Rieusset, P.G.: Recent Developments in the Navier–Stokes Problem, Research Notes in Mathematics. Chapman & Hall, CRC, London (2002)

    Book  Google Scholar 

  32. Moffatt, H.K., Loper, D.E.: The magnetostrophic rise of a buoyant parcel in the earth’s core. Geophys. J. Int. 117(2), 394–402 (1994)

    Article  ADS  Google Scholar 

  33. Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  34. Moffatt, H.K.: Magnetostrophic turbulence and the geodynamo. In: Kaneda, Y. (eds.) IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, Nagoya, Japan, September, 11–14, 2006, volume 4 of IUTAM Bookser, pp. 339–346. Springer, Dordrecht (2008)

  35. Roberts, P.H., King, E.M.: On the genesis of the Earth’s magnetism. Rep. Prog. Phys. 76(9), 096801 (2013)

    Article  ADS  Google Scholar 

  36. Semenov, Y.A.: Regularity theorems for parabolic equations. J. Funct. Anal. 231(2), 375–417 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Vlad Vicol for his very helpful advice. We also thank the referees for their most valuable comments. AS is partially supported by Hong Kong Early Career Scheme (ECS) Grant Project Number 28300016. SF is partially supported by NSF Grant DMS-1613135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Suen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedlander, S., Suen, A. Solutions to a Class of Forced Drift-Diffusion Equations with Applications to the Magneto-Geostrophic Equations. Ann. PDE 4, 14 (2018). https://doi.org/10.1007/s40818-018-0050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-018-0050-3

Keywords

Mathematics Subject Classification

Navigation