Skip to main content
Log in

Global Well-Posedness of 3-D Anisotropic Navier–Stokes System with Small Unidirectional Derivative

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In Liu and Zhang (Arch Ration Mech Anal 235:1405–1444, 2020), the authors proved that as long as the one-directional derivative of the initial velocity is sufficiently small in some scaling invariant spaces, then the classical Navier–Stokes system has a global unique solution. The goal of this paper is to extend this type of result to the 3-D anisotropic Navier–Stokes system (ANS) with only horizontal dissipation. More precisely, given initial data \(u_0=(u_0^\mathrm{h},u_0^3)\in \mathcal {B}^{0,\frac{1}{2}},\) (ANS) has a unique global solution provided that \(|D_\mathrm{h}|^{-1}\partial _3u_0\) is sufficiently small in the scaling invariant space \(\mathcal {B}^{0,\frac{1}{2}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209–246, 1981

    Article  MathSciNet  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Berlin 2011

    Book  Google Scholar 

  3. Cannone, M., Meyer, Y., Planchon, F.: Solutions autosimilaires des équations de Navier–Stokes. Séminaire “Équations aux Dérivées Partielles" de l’École polytechnique, Exposé VIII, 1993–1994

  4. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Fluids with anisotropic viscosity. M2AN Math. Model. Numer. Anal. 34, 315–335, 2000

    Article  MathSciNet  Google Scholar 

  5. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics. An introduction to rotating fluids and the Navier–Stokes equations. Oxford Lecture Series in Mathematics and its Applications, 32, The Clarendon Press, Oxford University Press, Oxford, 2006

  6. Chemin, J.-Y., Gallagher, I.: Large global solutions to the Navier–Stokes equations, slowly varying in one direction. Trans. Am. Math. Soc. 362, 2859–2873, 2010

    Article  MathSciNet  Google Scholar 

  7. Chemin, J.-Y., Gallagher, I., Zhang, P.: Sums of large global solutions to the incompressible Navier–Stokes equations. J. Reine Angew. Math. 681, 65–82, 2013

    MathSciNet  MATH  Google Scholar 

  8. Chemin, J.-Y., Zhang, P.: On the global wellposedness to the \(3\)-D incompressible anisotropic Navier–Stokes equations. Commun. Math. Phys. 272, 529–566, 2007

    Article  ADS  MathSciNet  Google Scholar 

  9. Chemin, J.-Y., Zhang, P.: Remarks on the global solutions of \(3\)-D Navier–Stokes system with one slow variable. Commun. Partial Differ. Equ. 40, 878–896, 2015

    Article  MathSciNet  Google Scholar 

  10. Chemin, J.-Y., Zhang, P.: On the critical one component regularity for 3-D Navier–Stokes system. Ann. Sci. Éc. Norm. Supér. (4) 49, 131–167, 2016

    Article  MathSciNet  Google Scholar 

  11. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315, 1964

    Article  MathSciNet  Google Scholar 

  12. Iftimie, D.: The resolution of the Navier–Stokes equations in anisotropic spaces. Rev. Mat. Iberoam. 15, 1–36, 1999

    Article  MathSciNet  Google Scholar 

  13. Iftimie, D.: A uniqueness result for the Navier–Stokes equations with vanishing vertical viscosity. SIAM J. Math. Anal. 33, 1483–1493, 2002

    Article  MathSciNet  Google Scholar 

  14. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35, 2001

    Article  MathSciNet  Google Scholar 

  15. Liu, Y., Zhang, P.: Global solutions of 3-D Navier–Stokes system with small unidirectional derivative. Arch. Ration. Mech. Anal. 235, 1405–1444, 2020

    Article  MathSciNet  Google Scholar 

  16. Paicu, M.: Équation anisotrope de Navier–Stokes dans des espaces critiques. Rev. Mat. Iberoam. 21, 179–235, 2005

    Article  Google Scholar 

  17. Paicu, M., Zhang, P.: Global solutions to the \(3\)-D incompressible anisotropic Navier–Stokes system in the critical spaces. Commun. Math. Phys. 307, 713–759, 2011

    Article  ADS  MathSciNet  Google Scholar 

  18. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, Berlin 1979

    Book  Google Scholar 

  19. Zhang, T.: Erratum to: Global wellposed problem for the \(3\)-D incompressible anisotropic Navier–Stokes equations in an anisotropic space. Commun. Math. Phys. 295, 877–884, 2010

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for valuable comments for the improvement of the original submission. M. Paicu was partially supported by the Agence Nationale de la Recherche, Project IFSMACS, Grant ANR-15-CE40-0010. P. Zhang is partially supported by NSF of China under Grants 11688101 and 11371347, Morningside Center of Mathematics of The Chinese Academy of Sciences and innovation grant from National Center for Mathematics and Interdisciplinary Sciences. All the authors are supported by the K. C. Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Additional information

Communicated by F. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. The Proof of Lemmas 4.2 and 6.1

Appendix A. The Proof of Lemmas 4.2 and 6.1

In this section, we present the proof of Lemmas 4.2 and 6.1.

Proof of Lemma 4.2

By applying Bony’s decomposition in the vertical variable (2.7) to \(a\otimes b\), we write

$$\begin{aligned} \begin{aligned}&\int \nolimits _0^T\bigl (\Delta _{\ell }^{\mathrm{v}}A(D)(a\otimes b) \big |\Delta _{\ell }^{\mathrm{v}}c\bigr )_{L^2}\,\mathrm{d}t=Q_1+Q_2\quad \text{ with }\\&\quad Q_1\buildrel {\mathrm{def}}\over =\int \nolimits _0^T\bigl (\Delta _{\ell }^{\mathrm{v}}A(D)(T^\mathrm{v}_{a} b) \big |\Delta _{\ell }^{\mathrm{v}}c\bigr )_{L^2}\,\mathrm{d}t =\int \nolimits _0^T\bigl (\Delta _{\ell }^{\mathrm{v}}(T^\mathrm{v}_{a} b) \big | A(D)\Delta _{\ell }^{\mathrm{v}}c\bigr )_{L^2}\,\mathrm{d}t\quad \text{ and }\\&\quad Q_2\buildrel {\mathrm{def}}\over =\int \nolimits _0^T\bigl (\Delta _{\ell }^{\mathrm{v}}A(D) R^\mathrm{v}(a, b) \big |\Delta _{\ell }^{\mathrm{v}}c\bigr )_{L^2}\,\mathrm{d}t =\int \nolimits _0^T\bigl (\Delta _{\ell }^{\mathrm{v}}R^\mathrm{v}(a, b) \big | A(D)\Delta _{\ell }^{\mathrm{v}}c\bigr )_{L^2}\,\mathrm{d}t. \end{aligned} \end{aligned}$$
(A.1)

Considering the support properties to the Fourier transform of the terms in \(T^\mathrm{v}_{a} b\), and noting that A(D) is a smooth homogeneous Fourier multiplier of degree zero, we find

$$\begin{aligned} \begin{aligned} |Q_1|&\leqq \int \nolimits _0^T\Vert \Delta _{\ell }^{\mathrm{v}}(T^\mathrm{v}_{a} b)\Vert _{L_\mathrm{h}^{\frac{4}{3}}(L_\mathrm{v}^2)} \Vert A(D) \Delta _{\ell }^{\mathrm{v}}c\Vert _{L_\mathrm{h}^4(L_\mathrm{v}^2)}\,\mathrm{d}t\\&\lesssim \sum _{|\ell '-\ell |\leqq 5} \int \nolimits _0^T\Vert S^\mathrm{v}_{\ell '-1}a\Vert _{L_\mathrm{h}^4(L_\mathrm{v}^\infty )} \Vert \Delta _{\ell '}^{\mathrm{v}}b\Vert _{L^2}\Vert A(D) \Delta _{\ell }^{\mathrm{v}}c\Vert _{L^2}^{\frac{1}{2}} \Vert \nabla _{\mathrm{h}}A(D)\Delta _{\ell }^{\mathrm{v}}c\Vert _{L^2}^{\frac{1}{2}}\,\mathrm{d}t\\&\lesssim \sum _{|\ell '-\ell |\leqq 5} \Bigl (\int \nolimits _0^T\Vert S^\mathrm{v}_{\ell '-1}a(t)\Vert _{L_\mathrm{h}^4(L_\mathrm{v}^\infty )}^4 \Vert \Delta _{\ell }^{\mathrm{v}}c(t)\Vert _{L^2}^2\,\mathrm{d}t\Bigr )^{\frac{1}{4}}\Vert \Delta _{\ell '}^{\mathrm{v}}b\Vert _{L^2_T(L^2)}\Vert \nabla _{\mathrm{h}}\Delta _{\ell }^{\mathrm{v}}c\Vert _{L^2_T(L^2)}^{\frac{1}{2}}. \end{aligned} \end{aligned}$$

It follows from Lemma 2.1 and Definition 2.4 that

$$\begin{aligned}&\Vert S^\mathrm{v}_{\ell '-1}a(t)\Vert _{L_\mathrm{h}^4(L_\mathrm{v}^\infty )} \leqq \sum _{j\leqq \ell '-2}\Vert \Delta ^\mathrm{v}_{j}a(t)\Vert _{L_\mathrm{h}^4(L_\mathrm{v}^\infty )}\\&\quad \lesssim \sum _{j\leqq \ell '-2}2^{\frac{j}{2}} \Vert \Delta ^\mathrm{v}_{j}a(t)\Vert _{L_\mathrm{h}^4(L_\mathrm{v}^2)}\lesssim \Vert a(t)\Vert _{\mathcal {B}_4^{0,\frac{1}{2}}}. \end{aligned}$$

This together with Definition 2.2 ensures that

$$\begin{aligned} |Q_1| \lesssim d_{\ell }^2 2^{-\ell }\Vert c\Vert _{\widetilde{L}^2_{T,\mathfrak {f}}(\mathcal {B}^{0,\frac{1}{2}})}^{\frac{1}{2}} \Vert b\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}\Vert \nabla _{\mathrm{h}}c\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}. \end{aligned}$$
(A.2)

Along the same lines, we get, by applying (2.5), that

$$\begin{aligned} \begin{aligned} |Q_{1,\mathfrak {g}}|&\buildrel {\mathrm{def}}\over =\int \nolimits _0^T\bigl |\bigl (\Delta _{\ell }^{\mathrm{v}}(T^\mathrm{v}_{a} b) \big | A(D)\Delta _{\ell }^{\mathrm{v}}c\bigr )_{L^2}\bigr |\mathfrak {g}^2\,\mathrm{d}t\\&\lesssim \sum _{|\ell '-\ell |\leqq 5} \Vert \sqrt{\mathfrak {g}} S^\mathrm{v}_{\ell '-1}a\Vert _{L_T^4(L_\mathrm{h}^4(L_\mathrm{v}^\infty ))}\Vert \mathfrak {g}\Delta _{\ell '}^{\mathrm{v}}b\Vert _{L^2_T(L^2)} \Vert \Delta _{\ell }^{\mathrm{v}}c\Vert _{L^\infty _T(L^2)}^{\frac{1}{2}}\Vert \mathfrak {g}\nabla _{\mathrm{h}}\Delta _{\ell }^{\mathrm{v}}c\Vert _{L^2_T(L^2)}^{\frac{1}{2}}\\&\lesssim d_{\ell }^2 2^{-\ell }\Vert a\Vert _{\widetilde{L}^\infty _T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}\Vert \mathfrak {g}\nabla _{\mathrm{h}}a\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}} \Vert \mathfrak {g}b\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}\Vert c\Vert _{\widetilde{L}^\infty _t\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}\Vert \mathfrak {g}\nabla _{\mathrm{h}}c\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}. \end{aligned} \end{aligned}$$
(A.3)

On the other hand, once again considering the support properties to the Fourier transform of the terms in \(R^\mathrm{v}({a}, b),\) we find

$$\begin{aligned} \begin{aligned} |Q_2|&\leqq \int \nolimits _0^T\Vert \Delta _{\ell }^{\mathrm{v}}R^\mathrm{v}(a,b)\Vert _{L_\mathrm{h}^{\frac{4}{3}}(L_\mathrm{v}^2)} \Vert A(D)\Delta _{\ell }^{\mathrm{v}}c\Vert _{L_\mathrm{h}^4(L_\mathrm{v}^2)}\,\mathrm{d}t\\&\lesssim \sum _{\ell '\geqq \ell -N_0}\int \nolimits _0^T\Vert \Delta ^\mathrm{v}_{\ell '}a\Vert _{L_\mathrm{h}^4(L_\mathrm{v}^2)} \Vert S^\mathrm{v}_{\ell '+2}b\Vert _{L^2_\mathrm{h}(L^\infty _\mathrm{v})} \Vert A(D)\Delta _{\ell }^{\mathrm{v}}c\Vert _{L^2}^{\frac{1}{2}} \Vert \nabla _{\mathrm{h}}A(D)\Delta _{\ell }^{\mathrm{v}}c\Vert _{L^2}^{\frac{1}{2}}\,\mathrm{d}t\\&\lesssim \sum _{\ell '\geqq \ell -N_0} 2^{-\frac{\ell '}{2}}\int \nolimits _0^Td_{\ell '}(t)\Vert a(t)\Vert _{\mathcal {B}^{0,\frac{1}{2}}_4}\Vert b(t)\Vert _{L^2_\mathrm{h}(L^\infty _\mathrm{v})} \Vert \Delta _{\ell }^{\mathrm{v}}c(t)\Vert _{L^2}^{\frac{1}{2}}\Vert \nabla _{\mathrm{h}}\Delta _{\ell }^{\mathrm{v}}c(t)\Vert _{L^2}^{\frac{1}{2}}\,\mathrm{d}t\\&\lesssim \sum _{\ell '\geqq \ell -N_0} d_{\ell '}2^{-\frac{\ell '}{2}}\int \nolimits _0^T\Vert a(t)\Vert _{\mathcal {B}^{0,\frac{1}{2}}_4}\Vert b(t)\Vert _{L^2_\mathrm{h}(L^\infty _\mathrm{v})} \Vert \Delta _{\ell }^{\mathrm{v}}c(t)\Vert _{L^2}^{\frac{1}{2}}\Vert \nabla _{\mathrm{h}}\Delta _{\ell }^{\mathrm{v}}c(t)\Vert _{L^2}^{\frac{1}{2}}\,\mathrm{d}t. \end{aligned} \end{aligned}$$

It follows from Lemma 2.1 however that

$$\begin{aligned} \Vert b\Vert _{L^2_T(L^2_\mathrm{h}(L^\infty _\mathrm{v}))} \lesssim \sum _{\ell \in {\mathbb {Z}}}2^{\frac{\ell }{2}} \Vert \Delta ^\mathrm{v}_{\ell }b\Vert _{L_T^2(L^2)}\leqq \Vert b\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}. \end{aligned}$$

As a result, by virtue of Definition 2.2, we obtain

$$\begin{aligned} \begin{aligned} |Q_2|&\lesssim \sum _{\ell '\geqq \ell -N_0}d_{\ell '} 2^{-\frac{\ell '}{2}} \Bigl (\int \nolimits _0^T\Vert a(t)\Vert _{\mathcal {B}_4^{0,\frac{1}{2}}}^4 \Vert \Delta _{\ell }^{\mathrm{v}}c(t)\Vert _{L^2}^{2}\,\mathrm{d}t\Bigr )^{\frac{1}{4}} \Vert \nabla _{\mathrm{h}}\Delta _{\ell }^{\mathrm{v}}c\Vert _{L_T^2(L^2)}^{\frac{1}{2}}\Vert b\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}\\&\lesssim \sum _{\ell '\geqq \ell -N_0}d_{\ell '} 2^{-\frac{\ell '}{2}} \Bigl (d_{\ell } 2^{-\frac{\ell }{2}}\Vert c\Vert _{\widetilde{L}^2_{T,\mathfrak {f}}\big (\mathcal {B}^{0,\frac{1}{2}}\big )}\Bigr )^{\frac{1}{2}} \bigl (d_{\ell } 2^{-\frac{\ell }{2}}\Vert \nabla _{\mathrm{h}}c\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}\bigr )^{\frac{1}{2}} \Vert b\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}\\&\lesssim d_{\ell }^2 2^{-\ell } \Vert c\Vert _{\widetilde{L}^2_{T,\mathfrak {f}}\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}\Vert \nabla _{\mathrm{h}}c\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}} \Vert b\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}. \end{aligned} \end{aligned}$$
(A.4)

Similarly, thanks to (2.5), one has

$$\begin{aligned} \begin{aligned}&|Q_{2,\mathfrak {g}}|\buildrel {\mathrm{def}}\over =\int \nolimits _0^T\bigl |\bigl (\Delta _{\ell }^{\mathrm{v}}R^\mathrm{v}(a, b) \big | A(D)\Delta _{\ell }^{\mathrm{v}}c\bigr )_{L^2}\bigr |\mathfrak {g}^2\,\mathrm{d}t\\&\quad \lesssim \sum _{\ell '\geqq \ell -N_0}\Vert \sqrt{\mathfrak {g}}\Delta ^\mathrm{v}_{\ell '}a\Vert _{L^4_T(L_\mathrm{h}^4(L_\mathrm{v}^2))} \Vert \mathfrak {g}S^\mathrm{v}_{\ell '+2}b\Vert _{L^2_T(L^2_\mathrm{h}(L^\infty _\mathrm{v}))} \bigl (\Vert \Delta _{\ell }^{\mathrm{v}}c\Vert _{L^2_T(L^2)}\Vert \mathfrak {g}\nabla _{\mathrm{h}}\Delta _{\ell }^{\mathrm{v}}c\Vert _{L^2_T(L^2)}\bigr )^{\frac{1}{2}}\\&\quad \lesssim d_{\ell }^2 2^{-\ell }\Vert a\Vert _{\widetilde{L}^\infty _T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}\Vert \mathfrak {g}\nabla _{\mathrm{h}}a\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}} \Vert \mathfrak {g}b\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}\Vert c\Vert _{\widetilde{L}^\infty _T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}\Vert \mathfrak {g}\nabla _{\mathrm{h}}c\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}. \end{aligned} \end{aligned}$$
(A.5)

Combining (A.2) with (A.4) gives (4.11), and (4.13) follows from (A.3) and (A.5).

It remains to prove (4.12). Similarly to the proof of (A.2), we write

$$\begin{aligned} |Q_1|&\lesssim \sum _{|\ell '-\ell |\leqq 5} \int \nolimits _0^T \Vert S^\mathrm{v}_{\ell '-1}a\Vert _{L_\mathrm{h}^4(L_\mathrm{v}^\infty )} \Vert \Delta _{\ell '}^{\mathrm{v}}b\Vert _{L_\mathrm{h}^4(L_\mathrm{v}^2)}\Vert A(D)\Delta _{\ell }^{\mathrm{v}}c\Vert _{L^2}\,\mathrm{d}t\\&\lesssim \sum _{|\ell '-\ell |\leqq 5} \int \nolimits _0^T \Vert a(t)\Vert _{\mathcal {B}^{0,\frac{1}{2}}_4} \Vert \Delta _{\ell '}^{\mathrm{v}}b(t)\Vert _{L^2}^{\frac{1}{2}}\Vert \Delta _{\ell '}^{\mathrm{v}}\nabla _{\mathrm{h}}b(t)\Vert _{L^2}^{\frac{1}{2}}\Vert \Delta _{\ell }^{\mathrm{v}}c(t)\Vert _{L^2}\,\mathrm{d}t\\&\lesssim \sum _{|\ell '-\ell |\leqq 5} \Bigl (\int \nolimits _0^T \Vert a(t)\Vert _{\mathcal {B}^{0,\frac{1}{2}}_4}^4 \Vert \Delta _{\ell '}^{\mathrm{v}}b(t)\Vert _{L^2}^2\,\mathrm{d}t\Bigr )^{\frac{1}{4}}\Vert \Delta _{\ell '}^{\mathrm{v}}\nabla _{\mathrm{h}}b\Vert _{L^2_T(L^2)}^{\frac{1}{2}}\Vert \Delta _{\ell }^{\mathrm{v}}c\Vert _{L^2_T(L^2)}, \end{aligned}$$

from which, along with Definition 2.2, we infer

$$\begin{aligned} \begin{aligned} |Q_1|&\lesssim d_\ell 2^{-\frac{\ell }{2}} \sum _{|\ell '-\ell |\leqq 5} d_{\ell '} 2^{-\frac{\ell '}{2}}\Vert b\Vert _{\widetilde{L}^2_{T,\mathfrak {f}}\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}} \Vert \nabla _{\mathrm{h}}b\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}\Vert c\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}\\&\lesssim d_{\ell }^2 2^{-\ell } \Vert b\Vert _{\widetilde{L}^2_{T,\mathfrak {f}}\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}\Vert \nabla _{\mathrm{h}}b\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}\Vert c\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}. \end{aligned} \end{aligned}$$
(A.6)

We deduce from Definition 2.4 that

$$\begin{aligned} |Q_2|&\lesssim \sum _{\ell '\geqq \ell -N_0}\int \nolimits _0^T \Vert \Delta ^\mathrm{v}_{\ell '}a\Vert _{L_\mathrm{h}^4(L_\mathrm{v}^2)} \Vert S^\mathrm{v}_{\ell '+2}b\Vert _{L^4_\mathrm{h}(L^\infty _\mathrm{v})} \Vert A(D)\Delta _{\ell }^{\mathrm{v}}c\Vert _{L^2}\,\mathrm{d}t\\&\lesssim \sum _{\ell '\geqq \ell -N_0}d_{\ell '}2^{-\frac{\ell '}{2}} \int \nolimits _0^T\Vert a(t)\Vert _{\mathcal {B}^{0,\frac{1}{2}}_4} \Vert b(t)\Vert _{L^4_\mathrm{h}(L^\infty _\mathrm{v})} \Vert \Delta _{\ell }^{\mathrm{v}}c(t)\Vert _{L^2}\,\mathrm{d}t\\&\lesssim d_\ell 2^{-\frac{\ell }{2}}\Vert c\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}\sum _{\ell '\geqq \ell -4} d_{\ell '} 2^{-\frac{\ell '}{2}} \Bigl (\int \nolimits _0^T \Vert a(t)\Vert _{\mathcal {B}_4^{0,\frac{1}{2}}}^2 \Vert b(t)\Vert _{L^4_\mathrm{h}(L^\infty _\mathrm{v})}^{2}\,\mathrm{d}t\Bigr )^{\frac{1}{2}}, \end{aligned}$$

whereas we get, by applying the triangle inequality and Lemma 2.1, that

$$\begin{aligned}&\Bigl (\int \nolimits _0^T\Vert a(t)\Vert _{\mathcal {B}_4^{0,\frac{1}{2}}}^2 \Vert b(t)\Vert _{L^4_\mathrm{h}(L^\infty _\mathrm{v})}^{2}\,\mathrm{d}t\Bigr )^{\frac{1}{2}}\\&\quad \lesssim \sum _{\ell \in {\mathbb {Z}}}2^{\frac{\ell }{2}} \Bigl (\int \nolimits _0^T \Vert a(t)\Vert _{\mathcal {B}_4^{0,\frac{1}{2}}}^2 \Vert \Delta _\ell b(t)\Vert _{L^2}\Vert \nabla _\mathrm{h}\Delta _\ell b(t)\Vert _{L^2}\,\mathrm{d}t\Bigr )^{\frac{1}{2}}\\&\quad \lesssim \sum _{\ell \in {\mathbb {Z}}}2^{\frac{\ell }{2}}\Bigl (\int \nolimits _0^T \Vert a(t)\Vert _{\mathcal {B}_4^{0,\frac{1}{2}}}^4 \Vert \Delta _\ell b(t)\Vert _{L^2}^2\,\mathrm{d}t\Bigr )^{\frac{1}{4}}\Vert \nabla _\mathrm{h}\Delta _\ell b\Vert _{L^2_T(L^2)}^{\frac{1}{2}}\\&\quad \lesssim \Vert b\Vert _{\widetilde{L}^2_{T,\mathfrak {f}}\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}} \Vert \nabla _{\mathrm{h}}b\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}. \end{aligned}$$

This in turn shows that

$$\begin{aligned} \begin{aligned} |Q_2|\lesssim d_{\ell }^2 2^{-\ell }\Vert c\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}\Vert b\Vert _{\widetilde{L}^2_{T,\mathfrak {f}}\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}\Vert \nabla _{\mathrm{h}}b\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}^{\frac{1}{2}}, \end{aligned} \end{aligned}$$

which, together with (A.6), ensures (4.12). This completes the proof of Lemma 4.2.

\(\square \)

Proof of Lemma 6.1

Let \(Q_1\) be given by (A.1). We first get, by a similar derivation of (A.2), that

$$\begin{aligned} \begin{aligned} |Q_1|&\lesssim \sum _{|\ell '-\ell |\leqq 5}\Vert S^\mathrm{v}_{\ell '-1}a\Vert _{L^4_T(L_\mathrm{h}^4(L_\mathrm{v}^\infty ))} \Vert \Delta _{\ell '}^{\mathrm{v}}b\Vert _{L^4_T(L^4_\mathrm{h}(L^2_\mathrm{v}))} \Vert A(D)\Delta _{\ell }^{\mathrm{v}}c\Vert _{L^2_t(L^2)}\\&\lesssim d_\ell 2^{-\frac{\ell }{2}}\sum _{|\ell '-\ell |\leqq 5}d_{\ell '}2^{-\frac{\ell '}{2}}\Vert a\Vert _{\widetilde{L}^4_T(\mathcal {B}_4^{0,\frac{1}{2}})} \Vert b\Vert _{\widetilde{L}^4_T(\mathcal {B}_4^{0,\frac{1}{2}})} \Vert c\Vert _{\widetilde{L}^2_T(\mathcal {B}^{0,\frac{1}{2}})}, \end{aligned} \end{aligned}$$

which, together with Proposition 2.1, implies that

$$\begin{aligned} |Q_1|\lesssim d_{\ell }^2 2^{-\ell }\Vert a\Vert _{\widetilde{L}^4_T(\mathcal {B}_4^{0,\frac{1}{2}})} \Vert b\Vert _{{\mathcal {B}^{-\frac{1}{2},\frac{1}{2}}_4}(T)}\Vert c\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}. \end{aligned}$$
(A.7)

For \(Q_2\) given by (A.1), we get, by a similar derivation of (A.4), that

$$\begin{aligned}\begin{aligned} |Q_2|&\lesssim \sum _{\ell '\geqq \ell -N_0}\Vert \Delta _{\ell '}^{\mathrm{v}}a\Vert _{L^4_T(L_\mathrm{h}^4(L_\mathrm{v}^2))} \Vert S^\mathrm{v}_{\ell '+2}b\Vert _{L^4_T(L^4_\mathrm{h}(L^\infty _\mathrm{v}))} \Vert A(D)\Delta _{\ell }^{\mathrm{v}}c\Vert _{L^2_T(L^2)}\\&\lesssim d_\ell 2^{-\frac{\ell }{2}}\sum _{\ell '\geqq \ell -N_0} d_{\ell '} 2^{-\frac{\ell '}{2}}\Vert a\Vert _{\widetilde{L}^4_T(\mathcal {B}_4^{0,\frac{1}{2}})} \Vert b\Vert _{\widetilde{L}^4_T(\mathcal {B}_4^{0,\frac{1}{2}})} \Vert c\Vert _{\widetilde{L}^2_T(\mathcal {B}^{0,\frac{1}{2}})}, \end{aligned} \end{aligned}$$

from which, with Proposition 2.1, we infer

$$\begin{aligned} |Q_2| \lesssim d_{\ell }^2 2^{-\ell }\Vert a\Vert _{\widetilde{L}^4_T(\mathcal {B}_4^{0,\frac{1}{2}})} \Vert b\Vert _{{\mathcal {B}^{-\frac{1}{2},\frac{1}{2}}_4}(T)}\Vert c\Vert _{\widetilde{L}^2_T\big (\mathcal {B}^{0,\frac{1}{2}}\big )}. \end{aligned}$$

This, together with (A.1) and (A.7), ensures (6.5).

The inequality (6.6) can be proved similarly. As a matter of fact, we observe that

$$\begin{aligned} |Q_1|&\lesssim \sum _{|\ell '-\ell |\leqq 5}\Vert S^\mathrm{v}_{\ell '-1}a\Vert _{L^2_T(L_\mathrm{h}^2(L_\mathrm{v}^\infty ))} \Vert \Delta _{\ell '}^{\mathrm{v}}b\Vert _{L^4_T(L^4_\mathrm{h}(L^2_\mathrm{v}))} \Vert A(D)\Delta _{\ell }^{\mathrm{v}}c\Vert _{L^4_T(L^4_\mathrm{h}(L^2_\mathrm{v}))}\\&\lesssim \sum _{|\ell '-\ell |\leqq 5}\Vert S^\mathrm{v}_{\ell '-1}a\Vert _{L^2_T(L_\mathrm{h}^2(L_\mathrm{v}^\infty ))} \Vert \Delta _{\ell '}^{\mathrm{v}}b\Vert _{L^4_T(L^4_\mathrm{h}(L^2_\mathrm{v}))} \Vert \Delta _{\ell }^{\mathrm{v}}c\Vert _{L^\infty _T(L^2)}^{\frac{1}{2}} \Vert \Delta _{\ell }^{\mathrm{v}}\nabla _{\mathrm{h}}c\Vert _{L^2_T(L^2)}^{\frac{1}{2}}\\&\lesssim d_\ell 2^{-\frac{\ell }{2}}\sum _{|\ell '-\ell |\leqq 5}d_{\ell '}2^{-\frac{\ell '}{2}}\Vert a\Vert _{\widetilde{L}^2_T(\mathcal {B}^{0,\frac{1}{2}})} \Vert b\Vert _{\widetilde{L}^4_T(\mathcal {B}_4^{0,\frac{1}{2}})} \Vert c\Vert _{\mathcal {B}^{0,\frac{1}{2}}(T)}, \end{aligned}$$

and

$$\begin{aligned} |Q_2|&\lesssim \sum _{\ell '\geqq \ell -N_0}\Vert \Delta _{\ell '}^{\mathrm{v}}a\Vert _{L^2_T(L^2)} \Vert S^\mathrm{v}_{\ell '+2}b\Vert _{L^4_T(L^4_\mathrm{h}(L^\infty _\mathrm{v}))} \Vert A(D) \Delta _{\ell }^{\mathrm{v}}c\Vert _{L^4_T(L_\mathrm{h}^4(L_\mathrm{v}^2))}\\&\lesssim d_\ell 2^{-\frac{\ell }{2}}\sum _{\ell '\geqq \ell -N_0} d_{\ell '} 2^{-\frac{\ell '}{2}}\Vert a\Vert _{\widetilde{L}^2_T(\mathcal {B}^{0,\frac{1}{2}})} \Vert b\Vert _{\widetilde{L}^4_T(\mathcal {B}_4^{0,\frac{1}{2}})} \Vert c\Vert _{\mathcal {B}^{0,\frac{1}{2}}(T)}. \end{aligned}$$

Then (6.6) follows from Proposition 2.1. This completes the proof of this lemma.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Paicu, M. & Zhang, P. Global Well-Posedness of 3-D Anisotropic Navier–Stokes System with Small Unidirectional Derivative. Arch Rational Mech Anal 238, 805–843 (2020). https://doi.org/10.1007/s00205-020-01555-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01555-x

Navigation