Skip to main content
Log in

On the Global Wellposedness to the 3-D Incompressible Anisotropic Navier-Stokes Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Corresponding to the wellposedness result [2] for the classical 3-D Navier-Stokes equations (NS ν) with initial data in the scaling invariant Besov space, \(\mathcal{B}^{-1+\frac3p}_{p,\infty},\) here we consider a similar problem for the 3-D anisotropic Navier-Stokes equations (ANS ν), where the vertical viscosity is zero. In order to do so, we first introduce the Besov-Sobolev type spaces, \(\mathcal{B}^{-\frac12,\frac12}_4\) and \(\mathcal{B}^{-\frac12,\frac12}_4(T).\) Then with initial data in the scaling invariant space \(\mathcal{B}^{-\frac12,\frac12}_4,\) we prove the global wellposedness for (ANS ν) provided the norm of initial data is small enough compared to the horizontal viscosity. In particular, this result implies the global wellposedness of (ANS ν) with high oscillatory initial data (1.2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bony J.-M. (1981). Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l’École Normale Supérieure 14: 209–246

    MATH  MathSciNet  Google Scholar 

  2. Cannone, M., Meyer, Y., Planchon, F.: Solutions autosimilaires des équations de Navier-Stokes, Séminaire “Équations aux Dérivées Partielles de l’École Polytechnique”, Exposé VIII, 1993–1994

  3. Chemin J.-Y. (1999). Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel. Journal d’Analyse Mathématique 77: 27–50

    Article  MATH  MathSciNet  Google Scholar 

  4. Chemin, J.-Y.: Localization in Fourier space and Navier-Stokes system. Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM series, Pisa: Centro Edizioni, Scunla Normale Superiore, pp. 53–136

  5. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics. An introduction to rotating fluids and the Navier-Stokes equations. Oxford Lecture Series in Mathematics and its Applications, 32. The Clarendon Press, Oxford, 2006.

  6. Chemin J.-Y., Desjardins B., Gallagher I. and Grenier E. (2000). Fluids with anisotropic viscosity. M2AN Math. Model. Numer. Anal. 34: 315–335

    Article  MATH  MathSciNet  Google Scholar 

  7. Ekman V.W. (1905). On the influence of the earth’s rotation on ocean currents. Arkiv. Matem. Astr. Fysik (Stockholm) 2(11): 1–52

    Google Scholar 

  8. Fleet T.-M. (1980). Differential Analysis. Cambridge University Press, Cambridge

    Google Scholar 

  9. Fujita H. and Kato T. (1964). On the Navier-Stokes initial value problem I. Archiv Rat. Mech. Anal. 16: 269–315

    Article  MATH  MathSciNet  Google Scholar 

  10. Grenier E. and Masmoudi N. (1997). Ekman layers of rotating fluids, the case of well prepared initial data. Commun. Partial Diff. Eqs. 22: 953–975

    MATH  MathSciNet  Google Scholar 

  11. Iftimie D. (1999). The resolution of the Navier-Stokes equations in anisotropic spaces. Rev. Mat. Iberoamericana 15: 1–36

    MATH  MathSciNet  Google Scholar 

  12. Iftimie D. (2002). A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity. SIAM J. Math. Anal. 33: 1483–1493

    Article  MATH  MathSciNet  Google Scholar 

  13. Pedlovsky J. (1979). Geophysical Fluid Dynamics. Springer, Berlin-Heidelberg-NewYork

    Google Scholar 

  14. Koch H. and Tataru D. (2001). Well-posedness for the Navier-Stokes equations. Adv. in Math. 157: 22–35

    Article  MATH  MathSciNet  Google Scholar 

  15. Paicu M. (2005). Équation anisotrope de Navier-Stokes dans des espaces critiques. Rev. Mat. Iberoamericana 21: 179–235

    MATH  MathSciNet  Google Scholar 

  16. Vishik M. (1999). Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Annales de l’École Normale Supérieure 32: 769–812

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chemin, JY., Zhang, P. On the Global Wellposedness to the 3-D Incompressible Anisotropic Navier-Stokes Equations. Commun. Math. Phys. 272, 529–566 (2007). https://doi.org/10.1007/s00220-007-0236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0236-0

Keywords

Navigation