Skip to main content
Log in

Compressible Navier–Stokes equations without heat conduction in \(L^p\)-framework

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we mainly consider global well-posedness and long time behavior of compressible Navier–Stokes equations without heat conduction in \(L^p\)-framework. This is a generalization of Peng and Zhai (SIMA 55(2):1439–1463, 2023), where they obtained the corresponding result in \(L^2\)-framework. Based on the key observation that we can release the regularity of non-dissipative entropy S in high frequency in Peng and Zhai (2023), we ultimately achieve the desired \(L^p\) estimate in the high frequency via complicated calculations on the nonlinear terms. In addition, we get the \(L^p\)-decay rate of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen, Grundlehren der mathematischen Wissenschaften, 343. Springer, Heidelberg (2011)

    Google Scholar 

  2. Bresch, D., Desjardins, B.: On the existence of global weak solutions to the Navier–Stokes eqautions for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87, 57–90 (2007)

    Article  MathSciNet  Google Scholar 

  3. Chen, Q., Tan, Z., Wu, G., Zou, W.: The initial value problem for the compressible Navier–Stokes equations without heat conductivity. J. Differ. Equ. 268, 5469–5490 (2020)

    Article  MathSciNet  Google Scholar 

  4. Chen, Q., Miao, C., Zhang, Z.: Global well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocity. Commun. Pure Appl. Math. 63, 1173–1224 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chen, Q., Miao, C., Zhang, Z.: On the ill-posedness of the compressible Navier–Stokes equations in the critical Besov spaces. Rev. Mat. Iberoam. 31, 1375–1402 (2015)

    Article  MathSciNet  Google Scholar 

  6. Chen, Z., Zhai, X.: Global large solutions and incompressible limit for the compressible Navier–Stokes equations. J. Math. Fluid Mech. 21, 26 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chikami, N., Danchin, R.: On the well-posedness of the full compressible Navier–Stokes system in critical Besov spaces. J. Differ. Equ. 258, 3435–3467 (2015)

    Article  MathSciNet  Google Scholar 

  8. Danchin, R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  MathSciNet  Google Scholar 

  9. Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. Commun. Partial Differ. Equ. 26, 1183–1233 (2001)

    Article  MathSciNet  Google Scholar 

  10. Danchin, R.: Global existence in critical spaces for flows of compressible viscous and heat conductive gases. Arch. Ration. Mech. Anal. 160, 1–39 (2001)

    Article  MathSciNet  Google Scholar 

  11. Danchin, R.: Fourier analysis methods for the compressible Navier–Stokes equations. In: Hand-book of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 1843–1903. Springer, Switzerland (2018)

  12. Danchin, R., He, L.: The incompressible limit in \(L^p\) type critical spaces. Math. Ann. 366, 1365–1402 (2016)

    Article  MathSciNet  Google Scholar 

  13. Danchin, R., Xu, J.: Optimal time-decay estimates for the compressible Navier–Stokes equations in the critical \(L^p\) framework. Arch. Ration. Mech. Anal. 224, 53–90 (2017)

    Article  MathSciNet  Google Scholar 

  14. Duan, R., Ma, H.: Global existence and convergence rates for the 3-D compressible Navier–Stokes equations without heat conductivity. Indiana Univ. Math. J. 5, 2299–2319 (2008)

    Article  MathSciNet  Google Scholar 

  15. Duan, R., Liu, H., Ukai, S., Yang, T.: Optimal \(L^p\)-\(L^q\) convergence rates for the compressible Navier–Stokes equations with potential force. J. Differ. Equ. 238, 220–233 (2007)

    Article  Google Scholar 

  16. Duan, R., Ukai, S., Yang, T., Zhao, H.: Optimal convergence rates for the compressible Navier–Stokes equations with potential forces. Math. Models Methods Appl. Sci. 17, 737–758 (2007)

    Article  MathSciNet  Google Scholar 

  17. Feireisl, E.: Compressible Navier–Stokes equations with a non-monotone pressure law. J. Differ. Equ. 184, 97–108 (2002)

    Article  MathSciNet  Google Scholar 

  18. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford, UK (2004)

    Google Scholar 

  19. Feireisl, E.: On the motion of a viscous, compressible and heat conducting fluid. Indiana Univ. Math. J. 53, 1705–1738 (2004)

    Article  MathSciNet  Google Scholar 

  20. Feireisl, E., Novotný, A., Petzeltová, H.: On the global existence of globally defined weak solutions to the Navier–Stokes equations of isentropic compressible fluids. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MathSciNet  Google Scholar 

  21. Guo, Y., Wang, Y.J.: Decay of dissipative equations and negative Sobolev spaces. Commun. Partial Differ. Equ. 37, 2165–2208 (2012)

    Article  MathSciNet  Google Scholar 

  22. Haspot, B.: Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Ration. Mech. Anal. 202, 427–460 (2011)

    Article  MathSciNet  Google Scholar 

  23. Hoff, D., Jenssen, H.: Symmetric nonbarotropic flows with large data and forces. Arch. Ration. Mech. Anal. 173, 297–343 (2004)

    Article  MathSciNet  Google Scholar 

  24. Huang, X., Li, J.: Global classical and weak solutions to the three-dimensional full compressible Navier–Stokes system with vacuum and large oscillations. Arch. Ration. Mech. Anal. 227, 995–1059 (2018)

    Article  MathSciNet  Google Scholar 

  25. Huang, X., Li, J.: Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier–Stokes and magnetohydrodynamic flows. Commun. Math. Phys. 324, 147–171 (2013)

    Article  MathSciNet  Google Scholar 

  26. Huang, X., Li, J., Wang, Y.: Serrin-type blowup criterion for full compressible Navier–Stokes system. Arch. Ration. Mech. Anal. 207, 303–316 (2013)

    Article  MathSciNet  Google Scholar 

  27. Jiang, S.: Large-time behavior of solutions to the equations of a viscous polytropic ideal gas. Ann Math. Pure Appl. 175, 253–275 (1998)

    Article  MathSciNet  Google Scholar 

  28. Jiang, S.: Large-time behavior of solutions to the equations of a one-dimensional viscous polytropic ideal gas in unbounded domains. Commun. Math. Phys. 200, 181–193 (1999)

    Article  MathSciNet  Google Scholar 

  29. Li, J.: Global well-posedness of non-heat conductive compressible Navier–Stokes equations in 1D. Nonlinearity 33, 2181–2210 (2020)

    Article  MathSciNet  Google Scholar 

  30. Liu, T., Zeng, Y.: Compressible Navier–Stokes equations with zero heat conductivity. J. Differ. Equ. 153, 225–291 (1999)

    Article  MathSciNet  Google Scholar 

  31. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  Google Scholar 

  32. Peng, H.Y., Zhai, X.P.: The Cauchy problem for the \(N\)-dimensional compressible Navier–Stokes equations without heat conductivity. SIAM J. Math. Anal. 55(2), 1439–1463 (2023)

    Article  MathSciNet  Google Scholar 

  33. Rozanova, O.: Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier–Stokes equation. J. Differ. Equ. 245, 1762–1774 (2008)

    Article  MathSciNet  Google Scholar 

  34. Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion. Publ. Res. Inst. Math. Sci. Kyoto Univ. 13, 193–253 (1977)

    Article  Google Scholar 

  35. Wen, H., Zhu, C.: Blow-up criterions of strong solutions to 3D compressible Navier–Stokes equations with vacuum. Adv. Math. 248, 534–572 (2013)

    Article  MathSciNet  Google Scholar 

  36. Wen, H., Zhu, C.: Global symmetric classical solutions of the full compressible Navier–Stokes equations with vacuum and large initial data. J. Math. Pure Appl. 102, 498–545 (2014)

    Article  MathSciNet  Google Scholar 

  37. Wen, H., Zhu, C.: Global solutions to the three-dimensional full compressible Navier–Stokes equations with vacuum at infinity in some classes of large data. SIAM J. Math. Anal. 49, 162–221 (2017)

    Article  MathSciNet  Google Scholar 

  38. Wu, G.C.: Global existence and asymptotic behavior for the 3D compressible Navier–Stokes equations without heat conductivity in a bounded domain. J. Differ. Equ. 262(2), 844–861 (2017)

    Article  MathSciNet  Google Scholar 

  39. Xin, Z.: Blow up of smooth solutions to the compressible Navier–Stokes equation with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)

    Article  Google Scholar 

  40. Xin, Z., Yan, W.: On blow-up of classical solutions to the compressible Navier–Stokes equations. Commun. Math. Phys. 321, 529–541 (2013)

    Article  Google Scholar 

  41. Xin, Z., Xu, J.: Optimal decay for the compressible Navier–Stokes equations without additional smallness assumptions. J. Differ. Equ. 274, 543–575 (2021)

    Article  MathSciNet  Google Scholar 

  42. Xu, J., Zhu, L.M.: Global existence and optimal time decay for the viscous liquid-gas two-phase flow model in the \(L^p\) critical Besov space. Discrete Contin. Dyn. Syst.-B 28(9), 5055–5086 (2023)

    Article  MathSciNet  Google Scholar 

  43. Zhai, X., Li, Y., Zhou, F.: Global large solutions to the three dimensional compressible Navier–Stokes equations. SIAM J. Math. Anal. 52, 1806–1843 (2020)

    Article  MathSciNet  Google Scholar 

  44. Zhang, Z., Zi, R.: Convergence to equilibrium for the solution of the full compressible Navier–Stokes equations. Ann. Inst. H. Poincaré Anal. Non Lineairé 37, 457–488 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research was supported by National Natural Science Foundation of China (11971100) and Natural Science Foundation of Shanghai (22ZR1402300).

Author information

Authors and Affiliations

Authors

Contributions

Cai and Liu wrote the main manuscript text, and Wu provided the idea and revised the manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhigang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We will state several important lemmas and propositions on the homogeneous Besov space \(\dot{B}^{s}_{p,r}\). First, let \(\mathcal {S}(\mathbb {R}^{n})\) be the Schwartz class of rapidly decreasing function. Given \(f\in \mathcal {S}(\mathbb {R}^{n})\), its Fourier transform \(\mathcal {F}f=\widehat{f}\) is defined by

$$\begin{aligned} \widehat{f}(\xi )=\int \limits _{\mathbb {R}^{n}}e^{-ix\cdot \xi }f(x)\textrm{d}x. \end{aligned}$$

Let \((\chi , \varphi )\) be a couple of smooth functions valued in [0, 1] such that \(\chi \) is supported in the ball \(\{\xi \in \mathbb {R}^{n}: \ |\xi |\le \frac{4}{3}\}\), \(\varphi \) is supported in the shell \(\{\xi \in \mathbb {R}^{n}: \ \frac{3}{4}\le |\xi |\le \frac{8}{3}\}\), \(\varphi (\xi ):=\chi (\xi /2)-\chi (\xi )\) and

$$\begin{aligned} \chi (\xi )+\sum _{j\ge 0}\varphi (2^{-j}\xi )=1~ \textrm{for}\ \forall \ \xi \in \mathbb { R}^{n}, ~~~\sum _{j\in \mathbb {Z}}\varphi (2^{-j}\xi )=1 ~\textrm{for} \ \forall \ \xi \in \mathbb {R}^{n}\setminus \{0\}. \end{aligned}$$

For \(f\in \mathcal {S}'\), the homogeneous frequency localization operators \(\dot{\Delta }_j\) and \(\dot{S}_j\) are defined by

$$\begin{aligned} \dot{\Delta }_{j}f\triangleq \varphi (2^{-j}D)f=\mathcal {F}^{-1}(\varphi (2^{-j}\xi )\mathcal {F}f)\quad \textrm{and}\quad \dot{S}_{j}f\triangleq \chi (2^{-j}D)f=\mathcal {F}^{-1}(\chi (2^{-j}\xi )\mathcal {F}f). \end{aligned}$$

We denote the space \(\mathcal {S}'_{h}(\mathbb {R}^n)\) by the dual space of \(\mathcal {S}'(\mathbb {R}^n)=\{f\in \mathcal {S}(\mathbb {R}^n):\,D^\alpha \hat{f}(0)=0\}\), which can also be identified by the quotient space of \(\mathcal {S}'(\mathbb {R}^n)/{\mathbb {P}}\) with the polynomial space \({\mathbb {P}}\). The formal equality

$$\begin{aligned} f=\sum _{j\in \mathbb {Z}}\dot{\Delta }_jf \end{aligned}$$

holds true for \(f\in \mathcal {S}'_{h}(\mathbb {R}^n)\) and is called the homogeneous Littlewood-Paley decomposition, and then we have the fact that

$$\begin{aligned} \dot{S}_jf=\sum _{q\le j-1}\dot{\Delta }_qf. \end{aligned}$$

One easily verifies that with our choice of \(\varphi \),

$$\begin{aligned} \dot{\Delta }_j\dot{\Delta }_qf\equiv 0\quad \text {if}\quad |j-q|\ge 2\quad \text {and} \quad \dot{\Delta }_j(\dot{S}_{q-1}f\dot{\Delta }_q f)\equiv 0\quad \hbox {if} \quad |j-q|\ge 5. \end{aligned}$$

Definition 3.1

(Homogeneous Besov space) For \(s\in \mathbb {R}\) and \(1\le p,r\le \infty \), the homogeneous Besov space \(\dot{B}^{s}_{p,r}\) is defined by

$$\begin{aligned} \dot{B}^s_{p,r}\triangleq \left\{ f\in \mathcal {S}_h':||f||_{\dot{B}^s_{p,r}}<+\infty \right\} , \end{aligned}$$
(3.44)

where

$$\begin{aligned} ||f||_{\dot{B}^s_{p,r}}\triangleq ||2^{js}||\dot{\Delta }_jf||_{L^p}||_{ l ^r(\mathbb {Z})}. \end{aligned}$$
(3.45)

Definition 3.2

(Chemin-Lerner spaces) Let \(T>0\), \(s\in \mathbb {R}\), \(1<r,p,q\le \infty \). The space \(\widetilde{L}^q_{T}(\dot{B}^s_{p,r})\) is defined by

$$\begin{aligned} \widetilde{L}^q_{T}(\dot{B}^s_{p,r})\triangleq \left\{ f\in L^q(0,T;\mathcal {S}'_h):||f||_{\widetilde{L}^q_{T}(\dot{B}^s_{p,r})}<+\infty \right\} , \end{aligned}$$
(3.46)

where

$$\begin{aligned} ||f||_{\widetilde{L}^q_{T}(\dot{B}^s_{p,r})}\triangleq ||2^{js}||\dot{\Delta }_jf||_{L^q(0,T;L^p)}||_{ l ^r(\mathbb {Z})}. \end{aligned}$$
(3.47)

Remark 3.1

It holds that

$$\begin{aligned} ||f||_{\widetilde{L}^q_{T}(\dot{B}^s_{p,r})}\le ||f||_{L^q_{T}(\dot{B}^s_{p,r})}\quad \textrm{if}\quad r\ge q;\quad ||f||_{\widetilde{L}^q_{T}(\dot{B}^s_{p,r})}\ge ||f||_{L^q_{T}(\dot{B}^s_{p,r})}\quad \textrm{if}\quad r\le q. \end{aligned}$$

Restricting the above norms (4.2), (4.3) to the low or high frequencies parts of distributions will be crucial in our approach. For example, let us fix some integer \(j_0\) and set

$$\begin{aligned} ||f||^l_{\dot{B}^{s}_{p,1}}\triangleq & {} \sum _{j\le j_0}2^{js}||\dot{\Delta }_jf||_{L^p},\quad ||f||^h_{\dot{B}^{s}_{p,1}}\triangleq \sum _{j\ge j_0-1}2^{js}||\dot{\Delta }_jf||_{L^p};\\ ||f||^l_{\widetilde{L}^\infty _{T}(\dot{B}^s_{p,1})}\triangleq & {} \sum _{j\le j_0}2^{js}||\dot{\Delta }_jf||_{L^\infty _T(L^p)},\quad ||f||^h_{\widetilde{L}^\infty _{T}(\dot{B}^s_{p,1})}\triangleq \sum _{j\ge j_0-1}2^{js}||\dot{\Delta }_jf||_{L^\infty _T(L^p)}. \end{aligned}$$

Lemma 3.1

(Bernstein inequalities) Let \(\mathscr {B}\) be a ball and \(\mathscr {C}\) be a ring of \(\mathbb {R}^n\). For \(\lambda >0\), integer \(k\ge 0\), \(1\le p\le q\le \infty \) and a smooth homogeneous function \(\sigma \) in \(\mathbb {R}^n\backslash \{0\}\) of degree m, then there holds

$$\begin{aligned} ||\nabla ^kf||_{L^q}\le & {} C^{k+1}\lambda ^{k+n(\frac{1}{p}-\frac{1}{q})}||f||_{L^p},\quad \textrm{whenever}\, \textrm{supp}\widehat{f}\subset \lambda \mathscr {B},\\ C^{-k-1}\lambda ^k||f||_{L^q}\le & {} ||\nabla ^kf||_{L^p}\le C^{k+1}\lambda ^k||f||_{L^p},\quad \textrm{whenever}\, \textrm{supp}\widehat{f}\subset \lambda \mathscr {C},\\ ||\sigma (\nabla )f||_{L^q}\le & {} C_{\sigma ,m}\lambda ^{m+n(\frac{1}{p}-\frac{1}{q})}||f||_{L^p},\quad \textrm{whenever}\, \textrm{supp}\widehat{f}\subset \lambda \mathscr {C}. \end{aligned}$$

Proposition 3.2

[1](Embedding for Besov space on \(\mathbb {R}^n\))

  • For any \(p\in [1,\infty ]\), we have the continuous embedding \(\dot{B}^{0}_{p,1}\hookrightarrow L^p\hookrightarrow \dot{B}^{0}_{p,\infty }\).

  • If \(s\in \mathbb {R}\), \(1\le p_1\le p_2\le \infty \), and \(1\le r_1\le r_2\le \infty \) then \(\dot{B}^{s}_{p_1,r_1}\hookrightarrow \dot{B}^{s-n(\frac{1}{p_1}-\frac{1}{p_2})}_{p_2,r_2}\).

  • The space \(\dot{B}^{\frac{n}{p}}_{p,1}\) is continuously embedded in the set of bounded continuous function (going to zero at infinity if, additionally, \(p<\infty \)).

Proposition 3.3

[16] If supp\(\mathcal {F}f\subset \left\{ \xi \in \mathbb {R}^n:R_1\lambda \le |\xi |\le R_2\lambda \right\} \), then there exists C depending only on d, \(R_1\), \(R_2\) so that for all \(1<p<\infty \),

$$\begin{aligned} C\lambda ^2\left( \frac{p-1}{p}\right) \int \limits _{\mathbb {R}^n}|f|^pdx\le (p-1)\int \limits _{\mathbb {R}^n}|\nabla f|^2|f|^{p-2}\textrm{d}x=-\int \limits _{\mathbb {R}^n}\Delta f|f|^{p-2}f\textrm{d}x. \end{aligned}$$
(3.48)

Proposition 3.4

[1](Interpolation inequality) Let \(1\le p,r,r_1,r_2\le \infty \), if \(f\in \dot{B}^{s_1}_{p,r_1}\cap \dot{B}^{s_2}_{p,r_2}\) and \(s_1\ne s_2\), then \(f\in \dot{B}^{\theta s_1+(1-\theta )s_2}_{p,r}\) for all \(\theta \in (0,1)\) and

$$\begin{aligned} ||f||_{\dot{B}^{\theta s_1+(1-\theta )s_2}_{p,r}}\le ||f||^\theta _{\dot{B}^{s_1}_{p,r_1}}||f||^{1-\theta }_{\dot{B}^{s_2}_{p,r_2}} \end{aligned}$$
(3.49)

with \(\frac{1}{r}=\frac{\theta }{r_1}+\frac{1-\theta }{r_2}\).

Proposition 3.5

[1, 13] Let \(s>0\), \(1\le p\), \(r\le \infty \), then \(\dot{B}^{s}_{p,r}\cap L^\infty \) is an algerbra and

$$\begin{aligned} ||fg||_{\dot{B}^{s}_{p,r}} \lesssim ||f||_{L^\infty }||g||_{\dot{B}^{s}_{p,r}} + ||g||_{L^\infty }||f||_{\dot{B}^{s}_{p,r}}. \end{aligned}$$
(3.50)

Let \(s_1+s_2>0\), \(s_1 \le \frac{n}{p_1}\), \(s_2 \le \frac{n}{p_2}\), \(s_1\ge s_2\), \(\frac{1}{p_1}+\frac{1}{p_2}\le 1\). Then, it holds that

$$\begin{aligned} ||fg||_{\dot{B}^{s_2}_{q,1}} \lesssim ||f||_{\dot{B}^{s_1}_{p_1,1}}||g||_{\dot{B}^{s_2}_{p_2,1}}, \end{aligned}$$
(3.51)

where \(\frac{1}{q} = \frac{1}{p_1} + \frac{1}{p_2} - \frac{s_1}{n}\).

Proposition 3.6

[41] Let the real numbers \(s_1,\ s_2,\ p_1\) and \(p_2\) be such that

$$\begin{aligned} s_1+s_2\ge 0,\ s_1\le \frac{n}{p_1},\ s_2<\min \left( \frac{n}{p_1},\frac{n}{p_2}\right) \ and\ \frac{1}{p_1}+\frac{1}{p_2}\le 1. \end{aligned}$$

Then, it holds that

$$\begin{aligned} \Vert fg\Vert _{\dot{B}_{p_2,\infty }^{s_1+s_2-\frac{n}{p_1}}}\lesssim \Vert f\Vert _{\dot{B}_{p_1,1}^{s_1}}\Vert g\Vert _{\dot{B}_{p_2,\infty }^{s_2}}. \end{aligned}$$
(3.52)

Corollary 3.1

Let the real numbers \(1-\frac{n}{2}<\sigma _1\le \frac{2n}{p}-\frac{n}{2}\) and p satisfy (1.7). The following two inequalities hold true:

$$\begin{aligned} \Vert fg\Vert _{\dot{B}_{2,\infty }^{-\sigma _1}}\lesssim \Vert f\Vert _{\dot{B}_{p,1}^{\frac{n}{p}}}\Vert g\Vert _{\dot{B}_{2,\infty }^{-\sigma _1}}, \end{aligned}$$
(3.53)

as well as

$$\begin{aligned} \Vert fg\Vert _{\dot{B}_{2,\infty }^{\frac{n}{p}-\frac{n}{2}-\sigma _1}}\lesssim \Vert f\Vert _{\dot{B}_{p,1}^{\frac{n}{p}-1}}\Vert g\Vert _{\dot{B}_{2,\infty }^{\frac{n}{p}-\frac{n}{2}-\sigma _1+1}}. \end{aligned}$$
(3.54)

Proposition 3.7

[42] Let \(j_0\in \mathbb {Z}\), and denote \(z^l\triangleq \dot{S}_{j_0}z,\ z^h\triangleq z-z^l\) and, for any \(s\in \mathbb {R}\),

$$\begin{aligned} \Vert z\Vert _{\dot{B}_{2,\infty }^{s}}^l\triangleq \sup _{j\le j_0}2^{js}\Vert \dot{\Delta }_jz\Vert _{L^2}. \end{aligned}$$

There exists a universal integer \(N_0\) such that for any \(2\le p\le 4\) and \(s>0\), we have

$$\begin{aligned}{} & {} \Vert fg^h\Vert _{\dot{B}_{2,\infty }^{-\sigma _0}}^l\le C(\Vert f\Vert _{\dot{B}_{p,1}^{s}}+\Vert \dot{S}_{k_0+N_0}f\Vert _{L^{p^*}})\Vert g^h\Vert _{\dot{B}_{p,\infty }^{-s}}, \end{aligned}$$
(3.55)
$$\begin{aligned}{} & {} \Vert f^h g\Vert _{\dot{B}_{2,\infty }^{-\sigma _0}}^l\le C(\Vert f^h\Vert _{\dot{B}_{p,1}^{s}}+\Vert \dot{S}_{k_0+N_0}f^h\Vert _{L^{p^*}})\Vert g\Vert _{\dot{B}_{p,\infty }^{-s}}, \end{aligned}$$
(3.56)

where \(\sigma _0\triangleq \frac{2n}{p}-\frac{n}{2}\), \(\frac{1}{p^*}+\frac{1}{p}=\frac{1}{2}\), C depends only on \(k_0,\ n,\ s\).

Additionally, for exponents \(s>0\), \(1 \le p_1,p_2,q \le \infty \) satisfying

$$\begin{aligned} \frac{n}{p_1}+\frac{n}{p_2}-n\le s\le \min \left( \frac{n}{p_1},\frac{n}{p_2}\right) \ \ and\ \ \frac{1}{q} = \frac{1}{p_1}+\frac{1}{p_2}-\frac{s}{n}. \end{aligned}$$

Then, it holds that

$$\begin{aligned} ||fg||_{\dot{B}^{-s}_{q,\infty }} \lesssim ||f||_{\dot{B}^{s}_{p_1,1}}||g||_{\dot{B}^{-s}_{p_2, \infty }}. \end{aligned}$$
(3.57)

Proposition 3.8

[11] Let \((s,r)\in \mathbb {R}\times [1,\infty ]\) and \(1\le p,p_1,p_2\le \infty \) with \(1/p=1/p_1+1/p_2\): For the paraproduct, the following continuity properties hold true

$$\begin{aligned} ||\dot{T}_ab||_{\dot{B}^{s}_{p,r}} \lesssim ||a||_{_{L^{p_1}}}||b||_{\dot{B}^{s}_{p_2,r}} \end{aligned}$$
(3.58)

and

$$\begin{aligned} ||\dot{T}_ab||_{\dot{B}^{s+t}_{p,r}} \lesssim ||a||_{\dot{B}^t_{p_1,\infty }}||b||_{\dot{B}^{s}_{p_2,r}},\ \ if\ t<0. \end{aligned}$$
(3.59)

If \(s_1+s_2>0\) and \(1/r=1/r_1+1/r_2\le 1\), then

$$\begin{aligned} ||\dot{R}(a,b)||_{\dot{B}^{s_1+s_2}_{p,r}} \lesssim ||a||_{\dot{B}^{s_1}_{p_1,r_1}}||b||_{\dot{B}^{s_2}_{p_2,r_2}}. \end{aligned}$$
(3.60)

If \(s_1+s_2=0\) and \(1/r_1+1/r_2\ge 1\), then

$$\begin{aligned} ||\dot{R}(a,b)||_{\dot{B}^{0}_{p,\infty }} \lesssim ||a||_{\dot{B}^{s_1}_{p_1,r_1}}||b||_{\dot{B}^{s_2}_{p_2,r_2}}. \end{aligned}$$
(3.61)

From Proposition 3.8, we easily deduce the following proposition:

Proposition 3.9

[42] The Bony decomposition satisfies that

$$\begin{aligned} ||\dot{T}_ab||_{\dot{B}^{s-1+ \frac{n}{2} - \frac{\textrm{d}}{p}}_{2,1}}\lesssim & {} ||a||_{\dot{B}^{\frac{n}{p}-1}_{p,1}}||b||_{\dot{B}^{s}_{p,1}},\ \ if\ n \ge 2\ and\ 1 \le p \le \min \left( 4,\frac{2n}{n-2}\right) , \end{aligned}$$
(3.62)
$$\begin{aligned} ||\dot{R}(a,b)||_{\dot{B}^{s-1+ \frac{n}{2} - \frac{n}{p}}_{2,1}}\lesssim & {} ||a||_{_{\dot{B}^{\frac{n}{p}-1}_{p,1}}}||b||_{\dot{B}^{s}_{p,1}},\ \ if\ s>1-\min \left( \frac{n}{p},\frac{n}{p'}\right) \ and\ 1\le p\le 4, \end{aligned}$$
(3.63)

where \(\frac{1}{p'}+\frac{1}{p}=\frac{1}{2}\).

Lemma 3.2

[13] Let \(n\ge 2\), \(1\le p, q\le \infty \), \(v\in \dot{B}^{s}_{q,1}(\mathbb {R}^n)\) and \(\nabla u \in \dot{B}^{\frac{n}{p}}_{p,1}\).

Asumme that

$$\begin{aligned} -n \min \left( \frac{1}{p}, 1-\frac{1}{q}\right) <s\le 1+n\min \left( \frac{1}{p}, \frac{1}{q}\right) . \end{aligned}$$

Then, it holds the commutator estimate

$$\begin{aligned} ||[\dot{\Delta }_j, u\cdot \nabla ]v||_{L^p} \lesssim d_j2^{-js}||\nabla u||_{\dot{B}^{\frac{n}{p}}_{p,1}}||v||_{\dot{B}^{s}_{q,1}}. \end{aligned}$$
(3.64)

In the limit case \(s=-n\min \left( \frac{1}{p}, 1-\frac{1}{q}\right) \), we have

$$\begin{aligned} \sup 2^{js}||[\dot{\Delta }_j, u\cdot \nabla ]||_{L^p}\lesssim ||\nabla u||_{\dot{B}^{\frac{n}{p}}_{p,1}}||v||_{\dot{B}^{s}_{q,\infty }}. \end{aligned}$$
(3.65)

Proposition 3.10

[42] Let \(F: \mathbb {R} \mapsto \mathbb {R}\) be a smooth function with \(F(0)=0\), \(1\le p, r\le \infty \) and \(s>0\). Then, \(F: \dot{B}^{s}_{p,r}(\mathbb {R}^n)\cap (L^\infty (\mathbb {R}^n))\) and

$$\begin{aligned} ||F(u)||_{\dot{B}^{s}_{p,r}}\le C||u||_{\dot{B}^{s}_{p,r}} \end{aligned}$$
(3.66)

with C a constant depending only on \(|||u||_{L^\infty }\), s, p, n and derivatives of F.

If \(s>-\min (\frac{n}{p}, \frac{n}{p'})\), then \(F: \dot{B}^{s}_{p,r}(\mathbb {R}^n)\cap \dot{B}^{\frac{n}{p}}_{p,1}(\mathbb {R}^n) \mapsto \dot{B}^{s}_{p,r}(\mathbb {R}^n)\cap \dot{B}^{\frac{n}{p}}_{p,1}(\mathbb {R}^n)\), and

$$\begin{aligned} ||F(u)||_{\dot{B}^{s}_{p,r}}\le C\left( 1+||u||_{\dot{B}^{\frac{n}{p}}_{p,1}}\right) ||u||_{\dot{B}^{s}_{p,r}}, \end{aligned}$$
(3.67)

where \(\frac{1}{p}+\frac{1}{p'}=\frac{1}{2}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Wu, Z. & Liu, M. Compressible Navier–Stokes equations without heat conduction in \(L^p\)-framework. Z. Angew. Math. Phys. 75, 101 (2024). https://doi.org/10.1007/s00033-024-02250-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02250-7

Keywords

Mathematics Subject Classification

Navigation