Skip to main content
Log in

Data-Driven Finite Elasticity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We extend to finite elasticity the Data-Driven formulation of geometrically linear elasticity presented in Conti et al. (Arch Ration Mech Anal 229:79–123, 2018). The main focus of this paper concerns the formulation of a suitable framework in which the Data-Driven problem of finite elasticity is well-posed in the sense of existence of solutions. We confine attention to deformation gradients \(F \in L^p(\Omega ;{\mathbb {R}}^{n\times n})\) and first Piola-Kirchhoff stresses \(P \in L^q(\Omega ;{\mathbb {R}}^{n\times n})\), with \((p,q)\in (1,\infty )\) and \(1/p+1/q=1\). We assume that the material behavior is described by means of a material data set containing all the states (FP) that can be attained by the material, and develop germane notions of coercivity and closedness of the material data set. Within this framework, we put forth conditions ensuring the existence of solutions. We exhibit specific examples of two- and three-dimensional material data sets that fit the present setting and are compatible with material frame indifference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R., Dhar, V.: Big data, data science, and analytics: the opportunity and challenge for IS research. Inf. Syst. Res. 25, 443–448, 2014

    Article  Google Scholar 

  2. Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Arch. Ration. Mech. Anal. 229, 79–123, 2018

    Article  MathSciNet  Google Scholar 

  3. Dacorogna, B.: Direct methods in the Calculus of Variations, Volume 78 of Applied Mathematical Sciences, 2nd edn. Springer, New York 2008

    Google Scholar 

  4. Kalidindi, S.R., De Graef, M.: Materials data science: current status and future outlook. Ann. Rev. Mater. Res. 45(45), 171–193, 2015

    Article  ADS  Google Scholar 

  5. Kufner, A., John, O., Fučík, S.: Function Spaces. Noordhoff International Publishing, Leyden: Monographs and Textbooks on Mechanics of Solids and Fluids. Analysis, Mechanics 1977

  6. Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101, 2016

    Article  ADS  MathSciNet  Google Scholar 

  7. Müller, S.: Variational models for microstructure and phase transitions. Calculus of Variations and Geometric Evolution Problems, Springer Lecture Notes in Mathematics 1713, (Eds. Bethuel F. et al.) Springer, New York, 85–210, 1999

  8. Murat, F.: Compacité par compensation. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 5, 489–507, 1978

    MATH  Google Scholar 

  9. Murat, F.: Compacité par compensation: condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser8, 69–102, 1981

    MATH  Google Scholar 

  10. Röger, M., Schweizer, B.: Relaxation analysis in a data driven problem with a single outlier. Preprint TU Dortmund 2019–06 2019

  11. Tartar, L.: Une nouvelle méthode de résolution d’équations aux dérivées partielles non linéaires. In: Journées d’Analyse Non Linéaire (Proceedings and Conference, Besançon, 1977), Volume 665 of Lecture Notes in Mathematics, Springer, Berlin, 228–241, 1978

  12. Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. 4, Edinburgh 1979, Res. Notes Math. 39, 136–212, 1979

  13. Tartar, L.: The compensated compactness method applied to systems of conservation laws. Systems of Nonlinear Partial Differential Equations (Oxford, 1982), Volume 111 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Reidel, Dordrecht, 263–285, 1983

  14. Tartar, L.: Estimations fines des coefficients homogénéisés. In: Ennio De Giorgi colloquium (Paris, 1983), Volume 125 of Res. Notes Math., Pitman, Boston, 168–187, 1985

  15. Tartar, L.: \(H\)-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinb. Sect. A115, 193–230, 1990

    Article  MathSciNet  Google Scholar 

  16. Tartar, L.: The general theory of homogenization. A Personalized Introduction, Volume 7 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin, 2009

  17. Temam, R.: Navier-Stokes equations. Volume 2 of Studies in Mathematics and Its Applications. North-Holland Publishing Co., Amsterdam, revised edition, 1979

  18. Tonelli, L.: Fondamenti di Calcolo delle Variazioni. Zanichelli, Bologna 1921

    MATH  Google Scholar 

  19. Zhang, K.-W.: On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form. Partial Differential Equations (Tianjin, 1986), Volume 1306 of Lecture Notes in Mathematics, Springer, Berlin, 262–277, 1988

  20. Ziemer, W.P.: Weakly Differentiable Functions, Volume 120 of Graduate Texts in Mathematics. Springer, New York, 1989. Sobolev spaces and functions of bounded variation

Download references

Acknowledgements

This work was partially Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via Project 211504053 - SFB 1060 and Project 390685813 - GZ 2047/1 - HCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ortiz.

Additional information

Communicated by The Editors

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Traces of Sobolev Spaces

Appendix A. Traces of Sobolev Spaces

We use standard properties of Sobolev spaces and their traces, see for example [5, 17, 20]. For the convenience of the reader we recall here the basic definitions and the facts used in the preceding analyses.

Definition A.1

Let \(\Omega \subseteq {\mathbb {R}}^n\) be a bounded Lipschitz set, \(p\in (1,\infty )\). For \(f\in L^p(\partial \Omega ;{\mathbb {R}}^n)\) we define

$$\begin{aligned} {[}f]_{1-1/p,p}^p:= \int _{\partial \Omega \times \partial \Omega } \frac{|f(x)-f(y)|^p}{|x-y|^{n+1}} \mathrm{d}{\mathcal {H}}^{n-1}(x) \mathrm{d}{\mathcal {H}}^{n-1}(y) , \end{aligned}$$
(A.1)

and set

$$\begin{aligned} W^{1-1/p,p}(\partial \Omega ;{\mathbb {R}}^n):=\{f\in L^p(\partial \Omega ;{\mathbb {R}}^n): [f]_{1-1/p,p}^p<\infty \}, \end{aligned}$$
(A.2)

equipped with the norm \(\Vert f\Vert _{L^p(\partial \Omega )}+[f]_{1-1/p,p}\). Furthermore, the dual space is denoted by

$$\begin{aligned} W^{-1+1/p,q}(\partial \Omega ;{\mathbb {R}}^n) = (W^{1-1/p,p}(\partial \Omega ;{\mathbb {R}}^n))^*, \end{aligned}$$
(A.3)

where \(q>1\) is defined by the condition \(1/p+1/q=1\).

It is readily checked that \(W^{1-1/p,p}(\partial \Omega ;{\mathbb {R}}^n)\) is a reflexive Banach space [5, Sect. 6.8].

Lemma A.2

Let \(\Omega \subseteq {\mathbb {R}}^n\) be a bounded Lipschitz set, \(p\in (1,\infty )\). Than

  1. (i)

    There is a linear continuous operator \(B:W^{1,p}(\Omega ;{\mathbb {R}}^n)\rightarrow W^{1-1/p,p}(\partial \Omega ;{\mathbb {R}}^n)\) such that \(B\varphi =\varphi |_{\partial \Omega }\) for any \(\varphi \in C^1({\bar{\Omega }};{\mathbb {R}}^n)\).

  2. (ii)

    There is a linear continuous operator \(\mathop {Ext}: W^{1-1/p,p}(\partial \Omega ;{\mathbb {R}}^n)\rightarrow W^{1,p}(\Omega ;{\mathbb {R}}^n)\) such that \(B\mathop {Ext}u=u\) for any \(u\in W^{1-1/p,p}(\partial \Omega ;{\mathbb {R}}^n)\).

Proof

See [5, Ths. 6.8.13 and 6.9.2] \(\quad \square \)

Definition A.3

Let \(\Omega \subseteq {\mathbb {R}}^n\) be a bounded Lipschitz set, \(q\in (1,\infty )\). We define

$$\begin{aligned} E^q(\Omega ):=\{ v\in L^q(\Omega ;{\mathbb {R}}^{n\times n}): \mathrm {div\,}v\in L^q(\Omega ;{\mathbb {R}}^n)\} , \end{aligned}$$
(A.4)

and endow it with the norm \(\Vert v\Vert _{E^q}:=\Vert v\Vert _{L^q}+\Vert \mathrm {div\,}v\Vert _{L^q}\).

It is easily verified that \(E^q\) is a reflexive Banach space, and that \(C^\infty ({\bar{\Omega }})\cap E^q(\Omega )\) is dense in v, see, for example, [17, Th. 1.1] (the different exponent makes no difference in the proof).

Lemma A.4

Let \(\Omega \subseteq {\mathbb {R}}^n\) be a bounded Lipschitz set, \(q\in (1,\infty )\). There is a linear continuous operator \(B_\nu :E^q(\Omega )\rightarrow W^{-1/q,q}(\partial \Omega ;{\mathbb {R}}^n)\) such that \(B_\nu \varphi =\varphi |_{\partial \Omega }\cdot \nu \), where \(\nu \) is the outer normal to \(\partial \Omega \), for any \(\varphi \in C^1({\bar{\Omega }};{\mathbb {R}}^n)\cap E^q(\Omega )\). Furthermore,

$$\begin{aligned} \langle B_\nu v, Bu\rangle = \int _\Omega v\cdot Du \,\mathrm{d}x + \int _\Omega u \cdot \mathrm {div\,}v \,\mathrm{d}x , \end{aligned}$$
(A.5)

for all \(v\in E^q(\Omega )\), \(u\in W^{1,p}(\Omega ;{\mathbb {R}}^n)\), where \(\langle \cdot ,\cdot \rangle \) denotes the duality pairing between \( W^{1/q,p}(\partial \Omega ;{\mathbb {R}}^n)\) and \( W^{-1/q,q}(\partial \Omega ;{\mathbb {R}}^n)\).

Proof

The proof follows from the same argument used in [17, Th. 1.2 and Rem. 1.3]

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, S., Müller, S. & Ortiz, M. Data-Driven Finite Elasticity. Arch Rational Mech Anal 237, 1–33 (2020). https://doi.org/10.1007/s00205-020-01490-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01490-x

Navigation