Skip to main content
Log in

Data-Driven Problems in Elasticity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider a new class of problems in elasticity, referred to as Data-Driven problems, defined on the space of strain-stress field pairs, or phase space. The problem consists of minimizing the distance between a given material data set and the subspace of compatible strain fields and stress fields in equilibrium. We find that the classical solutions are recovered in the case of linear elasticity. We identify conditions for convergence of Data-Driven solutions corresponding to sequences of approximating material data sets. Specialization to constant material data set sequences in turn establishes an appropriate notion of relaxation. We find that relaxation within this Data-Driven framework is fundamentally different from the classical relaxation of energy functions. For instance, we show that in the Data-Driven framework the relaxation of a bistable material leads to material data sets that are not graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.; Dhar, V.: Big data, data science, and analytics: the opportunity and challenge for IS research. Inf. Syst. Res. 25, 443–448 (2014)

    Article  Google Scholar 

  2. Allaire, G.: Shape optimization by the homogenization method, vol. 146. Applied Mathematical SciencesSpringer, New York (2002)

    MATH  Google Scholar 

  3. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1976/77)

  4. Ball, J.M.; James, R.D.: Fine phase mixtures as minimizers of the energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Conti, S.; Dolzmann, G.: On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Ration. Mech. Anal. 217, 413–437 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cherkaev, A.: Variational methods for structural optimization, vol. 140. Applied Mathematical SciencesSpringer, New York (2000)

    MATH  Google Scholar 

  7. Dacorogna, B.: Weak continuity and weak lower semicontinuity of nonlinear functionals, vol. 922. Lecture Notes in MathematicsSpringer, Berlin (1982)

    Book  MATH  Google Scholar 

  8. Dacorogna, B.: Direct methods in the calculus of variations, vol. 78. Applied Mathematical SciencesSpringer, Berlin (1989)

    MATH  Google Scholar 

  9. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and Their Applications. Birkhauser, Boston (1993)

    Book  MATH  Google Scholar 

  10. Francfort, G.A.; Murat, F.: Homogenization and optimal bounds in linear elasticity. Arch. Ration. Mech. Anal. 94, 307–334 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fonseca, I.; Müller, S.: \({\cal{A}}\)-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30, 1355–1390 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Girault, V.; Raviart, P.-A.: Finite element approximation of the Navier-Stokes equations, vol. 749. Lecture Notes in MathematicsSpringer, Berlin (1979)

    Book  MATH  Google Scholar 

  13. Kalidindi, S.R.; De Graef, M.: Materials data science: current status and future outlook. Ann. Rev. Mater. Res. 45, 171–193 (2015)

    Article  ADS  Google Scholar 

  14. Khachaturyan, A.G.: Some questions concerning the theory of phase transformations in solids. Sov. Phys. Solid State 8, 2163–2168 (1967)

    Google Scholar 

  15. Khachaturyan, A.G.: Theory of Structural Transformations in Solids. Wiley, New York (1983)

    Google Scholar 

  16. Kirchdoerfer, T.; Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kohn, R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3, 193–236 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Khachaturyan, A.G.; Shatalov, G.: Theory of macroscopic periodicity for a phase transition in the solid state. Sov. Phys. JETP 29, 557–561 (1969)

    ADS  Google Scholar 

  19. Kohn, R.V.; Strang, G.: Optimal design and relaxation of variational problems. I. Commun. Pure Appl. Math. 39, 113–137 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kohn, R.V.; Strang, G.: Optimal design and relaxation of variational problems. II. Commun. Pure Appl. Math. 39, 139–182 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  22. Müller, S., Šverák, V.: Unexpected solutions of first and second order partial differential equations. In: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), number Extra Vol. II, pp. 691–702, 1998

  23. Müller, S.; Šverák, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 2(157), 715–742 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Murat, F., Tartar, L.: Calcul des variations et homogénéisation. In: Bergman, D.J., et al. (eds.) Les méthodes de l'homogénéisation: théorie et applications en physique, pp. 319–370. Eyrolles, 1985. Translated in [25]

  25. Murat, F., Tartar, L.: Calculus of variations and homogenization. In: Cherkaev, A., Kohn, R. (eds.) Topics in the Mathematical Modelling of Composite Materials, volume 31 of Progr. Nonlinear Differential Equations Appl., pp. 139–173. Birkhäuser Boston, 1997

  26. Müller, S.: Variational models for microstructure and phase transitions. In: Bethuel, F., et al. (eds.) Calculus of variations and geometric evolution problems, Springer Lecture Notes in Math, pp. 85–210. 1713Springer, Berlin (1999)

    Chapter  Google Scholar 

  27. Murat, F.: Compacité par compensation. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 5, 489–507, 1978

  28. Murat, F.: Compacité par compensation: condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 8, 69–102, 1981

  29. Nesi, V.: Bounds on the effective conductivity of two-dimensional composites made of \({n \geqq 3}\) isotropic phases in prescribed volume fraction: the weighted translation method. Proc. R. Soc. Edinb. Sect. A 125, 1219–1239 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nesi, V.; Milton, G.W.: Polycrystalline configurations that maximize electrical resistivity. J. Mech. Phys. Solids 39, 525–542 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Rešetnjak, J.G.: Stability of conformal mappings in multi-dimensional spaces. Sib. Mat. Ž. 8, 91–114 (1967)

    MathSciNet  Google Scholar 

  32. Rešetnjak, J.G.: Stability theorems for mappings with bounded distortion. Sib. Mat. Ž. 9, 667–684 (1968)

    MathSciNet  Google Scholar 

  33. Ren, W.; Li, H.; Song, G.: A one-dimensional strain-rate-dependent constitutive model for superelastic shape memory alloys. Smart Mater. Struct. 16, 191–197 (2007)

    Article  ADS  Google Scholar 

  34. Roitburd, A.L.: The domain structure of crystals formed in the solid phase. Sov. Phys. Solid State 10, 2870–2876 (1969)

    Google Scholar 

  35. Roitburd, A.L.: Martensitic transformation as a typical phase transformation in solids. In: Solid State Physics, vol. 33, pp. 317–390. Academic Press, New York, 1978

  36. Tartar, L.: Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires. In: Journées d'Analyse Non Linéaire (Proc. Conf., Besançon, 1977), volume 665 of Lecture Notes in Math., pp. 228–241. Springer, Berlin, 1978

  37. Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symp., Vol. 4, Edinburgh, : Res. Notes Math . 39, 136–212, 1979

  38. Tartar, L.: The compensated compactness method applied to systems of conservation laws. In: Systems of nonlinear partial differential equations (Oxford, 1982), volume 111 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 263–285. Reidel, Dordrecht, 1983

  39. Tartar, L.: Estimations fines des coefficients homogénéisés. In: Ennio De Giorgi colloquium (Paris, 1983), volume 125 of Res. Notes in Math., pp. 168–187. Pitman, Boston, 1985

  40. Tartar, L.: Oscillations in nonlinear partial differential equations: compensated compactness and homogenization. In: Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), volume 23 of Lectures in Appl. Math., pp. 243–266. Amer. Math. Soc., Providence, RI, 1986

  41. Tartar, L.: \(H\)-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinb. Sect. A 115, 193–230 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tartar, L.: The general theory of homogenization. A personalized introduction, volume 7 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin; UMI, Bologna, 2009

  43. Temam, R.: Navier-Stokes equations, vol. 2. Studies in Mathematics and its ApplicationsNorth-Holland Publishing Co., Amsterdam-New York, Revised edition (1979)

    MATH  Google Scholar 

  44. Tonelli, L.: Fondamenti di Calcolo delle Variazioni. Zanichelli, Bologna (1921)

    MATH  Google Scholar 

  45. Willis, J.R.: Variational and related methods for the overall properties of composites. Adv. Appl. Mech. 21, 1–78 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Müller.

Additional information

Communicated by R. James

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, S., Müller, S. & Ortiz, M. Data-Driven Problems in Elasticity. Arch Rational Mech Anal 229, 79–123 (2018). https://doi.org/10.1007/s00205-017-1214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1214-0

Navigation