Adler S, Basketter D, Creton S et al (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 85(5):367–485. https://doi.org/10.1007/s00204-011-0693-2
CAS
Article
PubMed
Google Scholar
Aschauer L, Gruber LN, Pfaller W et al (2013) Delineation of the key aspects in the regulation of epithelial monolayer formation. Mol Cell Biol 33(13):2535–2550. https://doi.org/10.1128/MCB.01435-12
CAS
Article
PubMed
PubMed Central
Google Scholar
Aschner M, Ceccatelli S, Daneshian M et al (2017) Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. Altex 34(1):49–74. https://doi.org/10.14573/altex.1604201
Article
PubMed
Google Scholar
Bal-Price A, Hogberg HT, Crofton KM et al (2018) Recommendation on test readiness criteria for new approach methods in toxicology: exemplified for developmental neurotoxicity. Altex 35(3):306–352. https://doi.org/10.14573/altex.1712081
Article
PubMed
PubMed Central
Google Scholar
Beger RD, Dunn WB, Bandukwala A et al (2019) Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics 15(1):4. https://doi.org/10.1007/s11306-018-1460-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Behl M, Hsieh JH, Shafer TJ et al (2015) Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity. Neurotoxicol Teratol 52(Pt B):181–193. https://doi.org/10.1016/j.ntt.2015.09.003
CAS
Article
PubMed
Google Scholar
Behl M, Ryan K, Hsieh JH et al (2019) Screening for developmental neurotoxicity at the national toxicology program: the future is here. Toxicol Sci 167(1):6–14. https://doi.org/10.1093/toxsci/kfy278
CAS
Article
PubMed
PubMed Central
Google Scholar
Bell SM, Chang X, Wambaugh JF et al (2018) In vitro to in vivo extrapolation for high throughput prioritization and decision making. Toxicol Vitr 47:213–227. https://doi.org/10.1016/j.tiv.2017.11.016
CAS
Article
Google Scholar
Boei J, Vermeulen S, Klein B et al (2017) Xenobiotic metabolism in differentiated human bronchial epithelial cells. Arch Toxicol 91(5):2093–2105. https://doi.org/10.1007/s00204-016-1868-7
CAS
Article
PubMed
Google Scholar
Bosgra S, Westerhout J (2015) Interpreting in vitro developmental toxicity test battery results: the consideration of toxicokinetics. Reprod Toxicol 55:73–80. https://doi.org/10.1016/j.reprotox.2014.11.001
CAS
Article
PubMed
Google Scholar
Braunbeck T, Kais B, Lammer E et al (2015) The fish embryo test (FET): origin, applications, and future. Environ Sci Pollut Res Int 22(21):16247–16261. https://doi.org/10.1007/s11356-014-3814-7
CAS
Article
PubMed
Google Scholar
Brown JF Jr, Lawton RW (1984) Polychlorinated biphenyl (PCB) partitioning between adipose tissue and serum. Bull Environ Contam Toxicol 33(3):277–280
CAS
Article
PubMed
Google Scholar
Casey WM, Chang X, Allen DG et al (2018) Evaluation and optimization of pharmacokinetic models for in vitro to in vivo extrapolation of estrogenic activity for environmental chemicals. Environ Health Perspect 126(9):97001. https://doi.org/10.1289/EHP1655
CAS
Article
PubMed
Google Scholar
Chappey O, Scherrmann JM (1995) Colchicine: recent data on pharmacokinetics and clinical pharmacology. Rev Med Interne 16(10):782–789. https://doi.org/10.1016/0248-8663(96)80790-9
CAS
Article
PubMed
Google Scholar
Clemedson C, Kolman A, Forsby A (2007) The integrated acute systemic toxicity project (ACuteTox) for the optimisation and validation of alternative in vitro tests. Altern Lab Anim 35(1):33–38. https://doi.org/10.1177/026119290703500102
CAS
Article
PubMed
Google Scholar
Clothier RH (2007) Phototoxicity and acute toxicity studies conducted by the FRAME Alternatives Laboratory: a brief review. Altern Lab Anim 35(5):515–519. https://doi.org/10.1177/026119290703500502
CAS
Article
PubMed
Google Scholar
Clothier R, Dierickx P, Lakhanisky T et al (2008) A database of IC50 values and principal component analysis of results from six basal cytotoxicity assays, for use in the modelling of the in vivo and in vitro data of the EU ACuteTox project. Altern Lab Anim 36(5):503–519. https://doi.org/10.1177/026119290803600509
CAS
Article
PubMed
Google Scholar
Coecke S, Balls M, Bowe G et al (2005) Guidance on good cell culture practice. A report of the second ECVAM task force on good cell culture practice. Altern Lab Anim 33(3):261–287. https://doi.org/10.1177/026119290503300313
CAS
Article
PubMed
Google Scholar
Collins FS, Gray GM, Bucher JR (2008) Toxicology. Transforming environmental health protection. Science 319(5865):906–907. https://doi.org/10.1126/science.1154619
CAS
Article
PubMed
PubMed Central
Google Scholar
Daneshian M, Kamp H, Hengstler J, Leist M, van de Water B, (2016) Highlight report: launch of a large integrated european in vitro toxicology project: EU-ToxRisk. Arch Toxicol 90(5):1021–1024. https://doi.org/10.1007/s00204-016-1698-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Delp J, Gutbier S, Klima S et al (2018) A high-throughput approach to identify specific neurotoxicants/developmental toxicants in human neuronal cell function assays. Altex 35(2):235–253. https://doi.org/10.14573/altex.1712182
Article
PubMed
Google Scholar
Delp J, Funke M, Rudolf F et al (2019) Development of a neurotoxicity assay that is tuned to detect mitochondrial toxicants. Arch Toxicol 93(6):1585–1608. https://doi.org/10.1007/s00204-019-02473-y
CAS
Article
PubMed
Google Scholar
Dreser N, Madjar K, Holzer AK et al (2019) Development of a neural rosette formation assay (RoFA) to identify neurodevelopmental toxicants and to characterize their transcriptome disturbances. Arch Toxicol. https://doi.org/10.1007/s00204-019-02612-5
Article
PubMed
Google Scholar
Escher SE, Kamp H, Bennekou SH et al (2019) Towards grouping concepts based on new approach methodologies in chemical hazard assessment: the read-across approach of the EU-ToxRisk project. Arch Toxicol 93(12):3643–3667. https://doi.org/10.1007/s00204-019-02591-7
CAS
Article
PubMed
Google Scholar
Fischer FC, Henneberger L, Konig M et al (2017) Modeling exposure in the Tox21 in vitro bioassays. Chem Res Toxicol 30(5):1197–1208. https://doi.org/10.1021/acs.chemrestox.7b00023
CAS
Article
PubMed
Google Scholar
Fisher C, Simeon S, Jamei M, Gardner I, Bois YF (2019) VIVD: virtual in vitro distribution model for the mechanistic prediction of intracellular concentrations of chemicals in in vitro toxicity assays. Toxicol Vitr 58:42–50. https://doi.org/10.1016/j.tiv.2018.12.017
CAS
Article
Google Scholar
Fritsche E, Crofton KM, Hernandez AF et al (2017) OECD/EFSA workshop on developmental neurotoxicity (DNT): the use of non-animal test methods for regulatory purposes. Altex 34(2):311–315. https://doi.org/10.14573/altex.1701171
Article
PubMed
Google Scholar
Garrison PM, Tullis K, Aarts JM, Brouwer A, Giesy JP, Denison MS (1996) Species-specific recombinant cell lines as bioassay systems for the detection of 2,3,7,8-tetrachlorodibenzo-p-dioxin-like chemicals. Fundam Appl Toxicol 30(2):194–203
CAS
Article
PubMed
Google Scholar
Graepel R, Ter Braak B, Escher SE et al (2019) Paradigm shift in safety assessment using new approach methods: The EU-ToxRisk strategy. Curr Opin Toxicol 15:33–39. https://doi.org/10.1016/j.cotox.2019.03.005
Article
Google Scholar
Grass GM, Sinko PJ (2002) Physiologically-based pharmacokinetic simulation modelling. Adv Drug Deliv Rev 54(3):433–451
CAS
Article
PubMed
Google Scholar
Hardman JGLELL, Gilman AG (2001) Goodman and Gilman's the pharmacological basis of therapeutics, 10th, Edition edn. McGraw-Hill Professional, New York
Google Scholar
Hareng L, Pellizzer C, Bremer S, Schwarz M, Hartung T (2005) The integrated project ReProTect: a novel approach in reproductive toxicity hazard assessment. Reprod Toxicol 20(3):441–452. https://doi.org/10.1016/j.reprotox.2005.04.003
CAS
Article
PubMed
Google Scholar
Hartung T, Leist M (2008) Food for thought on the evolution of toxicology and the phasing out of animal testing. Altex 25(2):91–102
Article
PubMed
Google Scholar
Hartung T, Rovida C (2009) Chemical regulators have overreached. Nature 460(7259):1080–1081. https://doi.org/10.1038/4601080a
CAS
Article
PubMed
Google Scholar
Hartung T, Balls M, Bardouille C et al (2002) Good cell culture practice. ECVAM good cell culture practice task force report 1. Altern Lab Anim 30(4):407–414. https://doi.org/10.1177/026119290203000404
CAS
Article
PubMed
Google Scholar
Hartung T, Hoffmann S, Stephens M (2013) Mechanistic validation. Altex 30(2):119–130. https://doi.org/10.14573/altex.2013.2.119
Article
PubMed
PubMed Central
Google Scholar
Hoelting L, Klima S, Karreman C et al (2016) Stem cell-derived immature human dorsal root ganglia neurons to identify peripheral neurotoxicants. Stem Cells Transl Med 5(4):476–487. https://doi.org/10.5966/sctm.2015-0108
CAS
Article
PubMed
PubMed Central
Google Scholar
Hou TJ, Xia K, Zhang W, Xu XJ (2004) ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J Chem Inf Comput Sci 44(1):266–275. https://doi.org/10.1021/ci034184n
CAS
Article
PubMed
Google Scholar
Houze P, Baud FJ, Mouy R, Bismuth C, Bourdon R, Scherrmann JM (1990) Toxicokinetics of paraquat in humans. Hum Exp Toxicol 9(1):5–12. https://doi.org/10.1177/096032719000900103
CAS
Article
PubMed
Google Scholar
Hsieh JH, Smith-Roe SL, Huang R et al (2019) Identifying compounds with genotoxicity potential using Tox21 high-throughput screening assays. Chem Res Toxicol 32(7):1384–1401. https://doi.org/10.1021/acs.chemrestox.9b00053
CAS
Article
PubMed
PubMed Central
Google Scholar
Jacobs MN, Colacci A, Louekari K et al (2016) International regulatory needs for development of an IATA for non-genotoxic carcinogenic chemical substances. Altex 33(4):359–392. https://doi.org/10.14573/altex.1601201
Article
PubMed
Google Scholar
Jaworska JS, Natsch A, Ryan C, Strickland J, Ashikaga T, Miyazawa M (2015) Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: a decision support system for quantitative weight of evidence and adaptive testing strategy. Arch Toxicol 89(12):2355–2383. https://doi.org/10.1007/s00204-015-1634-2
CAS
Article
PubMed
Google Scholar
Judson R, Kavlock R, Martin M et al (2013) Perspectives on validation of high-throughput assays supporting 21st century toxicity testing. Altex 30(1):51–56. https://doi.org/10.14573/altex.2013.1.051
Article
PubMed
PubMed Central
Google Scholar
Judson R, Houck K, Martin M et al (2016) Analysis of the effects of cell stress and cytotoxicity on in vitro assay activity across a diverse chemical and assay space. Toxicol Sci 153(2):409. https://doi.org/10.1093/toxsci/kfw148
CAS
Article
PubMed
PubMed Central
Google Scholar
Judson RS, Houck KA, Watt ED, Thomas RS (2017) On selecting a minimal set of in vitro assays to reliably determine estrogen agonist activity. Regul Toxicol Pharmacol 91:39–49. https://doi.org/10.1016/j.yrtph.2017.09.022
CAS
Article
PubMed
PubMed Central
Google Scholar
Kijanska M, Kelm J (2004) In vitro 3D spheroids and microtissues: ATP-based cell viability and toxicity assays. In: Sittampalam GS, Grossman A, Brimacombe K et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda
Google Scholar
Kinsner-Ovaskainen A, Rzepka R, Rudowski R, Coecke S, Cole T, Prieto P (2009) Acutoxbase, an innovative database for in vitro acute toxicity studies. Toxicol Vitr 23(3):476–485. https://doi.org/10.1016/j.tiv.2008.12.019
CAS
Article
Google Scholar
Kinsner-Ovaskainen A, Prieto P, Stanzel S, Kopp-Schneider A (2013) Selection of test methods to be included in a testing strategy to predict acute oral toxicity: an approach based on statistical analysis of data collected in phase 1 of the ACuteTox project. Toxicol Vitr 27(4):1377–1394. https://doi.org/10.1016/j.tiv.2012.11.010
CAS
Article
Google Scholar
Krebs A, Nyffeler J, Rahnenfuhrer J, Leist M (2018) Normalization of data for viability and relative cell function curves. Altex 35(2):268–271. https://doi.org/10.14573/1803231
Article
PubMed
Google Scholar
Krebs A, Nyffeler J, Karreman C et al (2019a) Determination of benchmark concentrations and their statistical uncertainty for cytotoxicity test data and functional in vitro assays. Altex. https://doi.org/10.14573/altex.1912021
Article
PubMed
Google Scholar
Krebs A, Waldmann T, Wilks MF et al (2019b) Template for the description of cell-based toxicological test methods to allow evaluation and regulatory use of the data. Altex 36(4):682–699. https://doi.org/10.14573/altex.1909271
Article
PubMed
Google Scholar
Krug AK, Balmer NV, Matt F, Schonenberger F, Merhof D, Leist M (2013) Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Arch Toxicol 87(12):2215–2231. https://doi.org/10.1007/s00204-013-1072-y
CAS
Article
PubMed
Google Scholar
Legradi JB, Di Paolo C, Kraak MHS et al (2018) An ecotoxicological view on neurotoxicity assessment. Environ Sci Eur 30(1):46. https://doi.org/10.1186/s12302-018-0173-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Leist M, Hartung T (2013) Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice. Arch Toxicol 87(4):563–567. https://doi.org/10.1007/s00204-013-1038-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Leist M, Hengstler JG (2018) Essential components of methods papers. Altex 35(3):429–432. https://doi.org/10.14573/altex.1807031
Article
PubMed
Google Scholar
Leist M, Bremer S, Brundin P et al (2008a) The biological and ethical basis of the use of human embryonic stem cells for in vitro test systems or cell therapy. Altex 25(3):163–190
Article
PubMed
Google Scholar
Leist M, Hartung T, Nicotera P (2008b) The dawning of a new age of toxicology. Altex 25(2):103–114
Article
PubMed
Google Scholar
Leist M, Efremova L, Karreman C (2010) Food for thought considerations and guidelines for basic test method descriptions in toxicology. Altex 27(4):309–317
Article
PubMed
Google Scholar
Leist M, Hasiwa N, Daneshian M, Hartung T (2012a) Validation and quality control of replacement alternatives—current status and future challenges. Toxicol Res 1(1):8–22. https://doi.org/10.1039/C2TX20011B
CAS
Article
Google Scholar
Leist M, Lidbury BA, Yang C et al (2012b) Novel technologies and an overall strategy to allow hazard assessment and risk prediction of chemicals, cosmetics, and drugs with animal-free methods. Altex 29(4):373–388. https://doi.org/10.14573/altex.2012.4.373
Article
PubMed
Google Scholar
Leist M, Hasiwa N, Rovida C et al (2014) Consensus report on the future of animal-free systemic toxicity testing. Altex 31(3):341–356. https://doi.org/10.14573/altex.1406091
Article
PubMed
Google Scholar
Li HH, Chen R, Hyduke DR et al (2017) Development and validation of a high-throughput transcriptomic biomarker to address 21st century genetic toxicology needs. Proc Natl Acad Sci USA 114(51):E10881–E10889. https://doi.org/10.1073/pnas.1714109114
CAS
Article
PubMed
PubMed Central
Google Scholar
Limonciel A, Aschauer L, Wilmes A et al (2011) Lactate is an ideal non-invasive marker for evaluating temporal alterations in cell stress and toxicity in repeat dose testing regimes. Toxicol Vitr 25(8):1855–1862. https://doi.org/10.1016/j.tiv.2011.05.018
CAS
Article
Google Scholar
Lindl T (2002) Zell- und Gewebekultur, 5th ed edn. Spektrum Akademischer Verlag, Heidelberg
Google Scholar
Liu J, Patlewicz G, Williams AJ, Thomas RS, Shah I (2017) Predicting organ toxicity using in vitro bioactivity data and chemical structure. Chem Res Toxicol 30(11):2046–2059. https://doi.org/10.1021/acs.chemrestox.7b00084
CAS
Article
PubMed
PubMed Central
Google Scholar
Lotharius J, Falsig J, van Beek J et al (2005) Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci 25(27):6329–6342. https://doi.org/10.1523/JNEUROSCI.1746-05.2005
CAS
Article
PubMed
PubMed Central
Google Scholar
Luechtefeld T, Marsh D, Rowlands C, Hartung T (2018) Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol Sci 165(1):198–212. https://doi.org/10.1093/toxsci/kfy152
CAS
Article
PubMed
PubMed Central
Google Scholar
Marx U, Andersson TB, Bahinski A et al (2016) Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. Altex 33(3):272–321. https://doi.org/10.14573/altex.1603161
Article
PubMed
PubMed Central
Google Scholar
Meigs L, Smirnova L, Rovida C, Leist M, Hartung T (2018) Animal testing and its alternatives—the most important omics is economics. Altex 35(3):275–305. https://doi.org/10.14573/altex.1807041
Article
PubMed
Google Scholar
Messner S, Agarkova I, Moritz W, Kelm JM (2013) Multi-cell type human liver microtissues for hepatotoxicity testing. Arch Toxicol 87(1):209–213. https://doi.org/10.1007/s00204-012-0968-2
CAS
Article
PubMed
Google Scholar
Nordlind K (1990) Biological effects of mercuric chloride, nickel sulphate and nickel chloride. Prog Med Chem 27:189–233
CAS
Article
PubMed
Google Scholar
Nyffeler J, Dolde X, Krebs A et al (2017a) Combination of multiple neural crest migration assays to identify environmental toxicants from a proof-of-concept chemical library. Arch Toxicol 91(11):3613–3632. https://doi.org/10.1007/s00204-017-1977-y
CAS
Article
PubMed
Google Scholar
Nyffeler J, Karreman C, Leisner H et al (2017b) Design of a high-throughput human neural crest cell migration assay to indicate potential developmental toxicants. Altex 34(1):75–94. https://doi.org/10.14573/altex.1605031
Article
PubMed
Google Scholar
Nyffeler J, Chovancova P, Dolde X et al (2018) A structure-activity relationship linking non-planar PCBs to functional deficits of neural crest cells: new roles for connexins. Arch Toxicol 92(3):1225–1247. https://doi.org/10.1007/s00204-017-2125-4
CAS
Article
PubMed
Google Scholar
OECD (1981) Test No. 411: subchronic dermal toxicity: 90-day study. OECD Guidelines for the Testing of Chemicals, Section 4. https://doi.org/10.1787/9789264070769-en
OECD (1997) Test No. 424: neurotoxicity study in rodents. OECD Guidelines for the Testing of Chemicals, Section 4. https://doi.org/10.1787/9789264071025-en
OECD (2007) Test No. 426: developmental neurotoxicity study. OECD Guidelines for the Testing of Chemicals, Section 4. https://doi.org/10.1787/9789264067394-en
OECD (2013) Test No. 236: fish embryo acute toxicity (FET) test. OECD Guidelines for the Testing of Chemicals, Section 2. https://doi.org/10.1787/9789264203709-en
OECD (2017) Guidance document for describing non-guideline in vitro test methods. OECD Series on Testing and Assessment. https://doi.org/10.1787/9789264274730-en
OECD (2018a) Guidance document on good in vitro method practices (GIVIMP). OECD Series on Testing and Assessment. https://doi.org/10.1787/9789264304796-en
OECD (2018b) Test No. 451: carcinogenicity studies. OECD Guidelines for the Testing of Chemicals, Section 4. https://doi.org/10.1787/9789264071186-en
Olson H, Betton G, Robinson D et al (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32(1):56–67. https://doi.org/10.1006/rtph.2000.1399
CAS
Article
PubMed
Google Scholar
Pallocca G, Grinberg M, Henry M et al (2016) Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol 90(1):159–180. https://doi.org/10.1007/s00204-015-1658-7
CAS
Article
PubMed
Google Scholar
Pamies D, Bal-Price A, Chesne C et al (2018) Advanced good cell culture practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. Altex 35(3):353–378. https://doi.org/10.14573/altex.1710081
Article
PubMed
Google Scholar
Puhl AC, Milton FA, Cvoro A et al (2015) Mechanisms of peroxisome proliferator activated receptor gamma regulation by non-steroidal anti-inflammatory drugs. Nucl Recept Signal 13:e004. https://doi.org/10.1621/nrs.13004
Article
PubMed
PubMed Central
Google Scholar
Reiser L, Harper L, Freeling M, Han B, Luan S (2018) FAIR: a call to make published data more findable, accessible, interoperable, and reusable. Mol Plant 11(9):1105–1108. https://doi.org/10.1016/j.molp.2018.07.005
CAS
Article
PubMed
Google Scholar
Rempel E, Hoelting L, Waldmann T et al (2015) A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol 89(9):1599–1618. https://doi.org/10.1007/s00204-015-1573-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Richard AM, Judson RS, Houck KA et al (2016) ToxCast chemical landscape: paving the road to 21st century toxicology. Chem Res Toxicol 29(8):1225–1251. https://doi.org/10.1021/acs.chemrestox.6b00135
CAS
Article
PubMed
Google Scholar
Roi AJ (2006) ECVAM’s database service on alternative methods (DB-ALM)—online. ALTEX: Alternativen zu Tierexperimenten 23:177
Google Scholar
Rovida C, Vivier M, Garthoff B, Hescheler J (2014) ESNATS conference—the use of human embryonic stem cells for novel toxicity testing approaches. Altern Lab Anim 42(2):97–113. https://doi.org/10.1177/026119291404200203
CAS
Article
PubMed
Google Scholar
Rovida C, Alepee N, Api AM et al (2015) Integrated testing strategies (ITS) for safety assessment. Altex 32(1):25–40. https://doi.org/10.14573/altex.1411011
Article
PubMed
Google Scholar
Rusyn I, Greene N (2018) The impact of novel assessment methodologies in toxicology on green chemistry and chemical alternatives. Toxicol Sci 161(2):276–284. https://doi.org/10.1093/toxsci/kfx196
CAS
Article
PubMed
Google Scholar
Sarkans U, Gostev M, Athar A et al (2018) The BioStudies database-one stop shop for all data supporting a life sciences study. Nucleic Acids Res 46(D1):D1266–D1270. https://doi.org/10.1093/nar/gkx965
CAS
Article
PubMed
Google Scholar
Schenk B, Weimer M, Bremer S et al (2010) The ReProtect feasibility study, a novel comprehensive in vitro approach to detect reproductive toxicants. Reprod Toxicol 30(1):200–218. https://doi.org/10.1016/j.reprotox.2010.05.012
CAS
Article
PubMed
Google Scholar
Schimming JP, Ter Braak B, Niemeijer M, Wink S, van de Water B (2019) System microscopy of stress response pathways in cholestasis research. Methods Mol Biol 1981:187–202. https://doi.org/10.1007/978-1-4939-9420-5_13
CAS
Article
PubMed
Google Scholar
Schmidt BZ, Lehmann M, Gutbier S et al (2017) In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 91(1):1–33. https://doi.org/10.1007/s00204-016-1805-9
CAS
Article
PubMed
Google Scholar
Scholz D, Poltl D, Genewsky A et al (2011) Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. J Neurochem 119(5):957–971. https://doi.org/10.1111/j.1471-4159.2011.07255.x
CAS
Article
PubMed
Google Scholar
Shinde V, Klima S, Sureshkumar PS et al (2015) Human pluripotent stem cell based developmental toxicity assays for chemical safety screening and systems biology data generation. J Vis Exp. https://doi.org/10.3791/52333
Article
PubMed
PubMed Central
Google Scholar
Shinde V, Perumal Srinivasan S, Henry M et al (2016) Comparison of a teratogenic transcriptome-based predictive test based on human embryonic versus inducible pluripotent stem cells. Stem Cell Res Ther 7(1):190. https://doi.org/10.1186/s13287-016-0449-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Shinde V, Hoelting L, Srinivasan SP et al (2017) Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol 91(2):839–864. https://doi.org/10.1007/s00204-016-1741-8
CAS
Article
PubMed
Google Scholar
Smirnova L, Harris G, Delp J et al (2016) A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis. Arch Toxicol 90(11):2725–2743. https://doi.org/10.1007/s00204-015-1637-z
CAS
Article
PubMed
Google Scholar
Sommar J, Lindqvist O, Stromberg D (2000) Distribution equilibrium of mercury (II) chloride between water and air applied to flue gas scrubbing. J Air Waste Manag Assoc 50(9):1663–1666
CAS
Article
PubMed
Google Scholar
Sonneveld E, Jansen HJ, Riteco JA, Brouwer A, van der Burg B (2005) Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol Sci 83(1):136–148. https://doi.org/10.1093/toxsci/kfi005
CAS
Article
PubMed
Google Scholar
Sonneveld E, Pieterse B, Schoonen WG, van der Burg B (2011) Validation of in vitro screening models for progestagenic activities: inter-assay comparison and correlation with in vivo activity in rabbits. Toxicol Vitr 25(2):545–554. https://doi.org/10.1016/j.tiv.2010.11.018
CAS
Article
Google Scholar
Stephens ML, Akgun-Olmez SG, Hoffmann S et al (2018) Adaptation of the systematic review framework to the assessment of toxicological test methods: challenges and lessons learned with the zebrafish embryotoxicity test. Toxicol Sci. https://doi.org/10.1093/toxsci/kfz128
Article
PubMed
Google Scholar
Thomas RS, Bahadori T, Buckley TJ et al (2019) The next generation blueprint of computational toxicology at the us environmental protection agency. Toxicol Sci 169(2):317–332. https://doi.org/10.1093/toxsci/kfz058
CAS
Article
PubMed
Google Scholar
Tice RR, Austin CP, Kavlock RJ, Bucher JR (2013) Improving the human hazard characterization of chemicals: a Tox21 update. Environ Health Perspect 121(7):756–765. https://doi.org/10.1289/ehp.1205784
CAS
Article
PubMed
PubMed Central
Google Scholar
van der Burg B, Winter R, Man HY et al (2010a) Optimization and prevalidation of the in vitro AR CALUX method to test androgenic and antiandrogenic activity of compounds. Reprod Toxicol 30(1):18–24. https://doi.org/10.1016/j.reprotox.2010.04.012
CAS
Article
PubMed
Google Scholar
van der Burg B, Winter R, Weimer M et al (2010b) Optimization and prevalidation of the in vitro ERalpha CALUX method to test estrogenic and antiestrogenic activity of compounds. Reprod Toxicol 30(1):73–80. https://doi.org/10.1016/j.reprotox.2010.04.007
CAS
Article
PubMed
Google Scholar
van der Burg B, Pieterse B, Buist H et al (2015a) A high throughput screening system for predicting chemically-induced reproductive organ deformities. Reprod Toxicol 55:95–103. https://doi.org/10.1016/j.reprotox.2014.11.011
CAS
Article
PubMed
Google Scholar
van der Burg B, Wedebye EB, Dietrich DR et al (2015b) The ChemScreen project to design a pragmatic alternative approach to predict reproductive toxicity of chemicals. Reprod Toxicol 55:114–123. https://doi.org/10.1016/j.reprotox.2015.01.008
CAS
Article
PubMed
Google Scholar
van der Linden SC, von Bergh AR, van Vught-Lussenburg BM et al (2014) Development of a panel of high-throughput reporter-gene assays to detect genotoxicity and oxidative stress. Mutat Res Genet Toxicol Environ Mutagen 760:23–32. https://doi.org/10.1016/j.mrgentox.2013.09.009
CAS
Article
PubMed
Google Scholar
van Vugt-Lussenburg BMA, van der Lee RB, Man HY et al (2018) Incorporation of metabolic enzymes to improve predictivity of reporter gene assay results for estrogenic and anti-androgenic activity. Reprod Toxicol 75:40–48. https://doi.org/10.1016/j.reprotox.2017.11.005
CAS
Article
PubMed
Google Scholar
van Wetering S, van der Linden AC, van Sterkenburg MA, Rabe KF, Schalkwijk J, Hiemstra PS (2000) Regulation of secretory leukocyte proteinase inhibitor (SLPI) production by human bronchial epithelial cells: increase of cell-associated SLPI by neutrophil elastase. J Investig Med 48(5):359–366
PubMed
Google Scholar
Vanhove J, Pistoni M, Welters M et al (2016) H3K27me3 does not orchestrate the expression of lineage-specific markers in hESC-derived hepatocytes in vitro. Stem Cell Rep 7(2):192–206. https://doi.org/10.1016/j.stemcr.2016.06.013
CAS
Article
Google Scholar
Viant MR, Ebbels TMD, Beger RD et al (2019) Use cases, best practice and reporting standards for metabolomics in regulatory toxicology. Nat Commun 10(1):3041. https://doi.org/10.1038/s41467-019-10900-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci 29(3):163–172. https://doi.org/10.1021/ci00063a006
CAS
Article
Google Scholar
Waldmann T, Grinberg M, Konig A et al (2017) Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol 30(4):905–922. https://doi.org/10.1021/acs.chemrestox.6b00259
CAS
Article
PubMed
Google Scholar
Wambaugh JF, Hughes MF, Ring CL et al (2018) Evaluating in vitro-in vivo extrapolation of toxicokinetics. Toxicol Sci 163(1):152–169. https://doi.org/10.1093/toxsci/kfy020
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang B, Gray G (2015) Concordance of noncarcinogenic endpoints in rodent chemical bioassays. Risk Anal 35(6):1154–1166. https://doi.org/10.1111/risa.12314
Article
PubMed
Google Scholar
Wetmore BA, Allen B, Clewell HJ 3rd et al (2014) Incorporating population variability and susceptible subpopulations into dosimetry for high-throughput toxicity testing. Toxicol Sci 142(1):210–224. https://doi.org/10.1093/toxsci/kfu169
CAS
Article
PubMed
Google Scholar
Wetmore BA, Wambaugh JF, Allen B et al (2015) incorporating high-throughput exposure predictions with dosimetry-adjusted in vitro bioactivity to inform chemical toxicity testing. Toxicol Sci 148(1):121–136. https://doi.org/10.1093/toxsci/kfv171
CAS
Article
PubMed
PubMed Central
Google Scholar
Whelan M, Eskes C (2016) Evolving the principles and practice of validation for new alternative approaches to toxicity testing. Adv Exp Med Biol 856:387–399. https://doi.org/10.1007/978-3-319-33826-2_15
CAS
Article
PubMed
Google Scholar
Wieser M, Stadler G, Jennings P et al (2008) hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. Am J Physiol Renal Physiol 295(5):F1365–F1375. https://doi.org/10.1152/ajprenal.90405.2008
CAS
Article
PubMed
Google Scholar
Wink S, Hiemstra S, Herpers B, van de Water B (2017) High-content imaging-based BAC-GFP toxicity pathway reporters to assess chemical adversity liabilities. Arch Toxicol 91(3):1367–1383. https://doi.org/10.1007/s00204-016-1781-0
CAS
Article
PubMed
Google Scholar
Wink S, Hiemstra SW, Huppelschoten S, Klip JE, van de Water B (2018) Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury. Arch Toxicol 92(5):1797–1814. https://doi.org/10.1007/s00204-018-2178-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Wishart DS, Knox C, Guo AC et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668–D672. https://doi.org/10.1093/nar/gkj067
CAS
Article
PubMed
Google Scholar
Zimmer B, Lee G, Balmer NV et al (2012) Evaluation of developmental toxicants and signaling pathways in a functional test based on the migration of human neural crest cells. Environ Health Perspect 120(8):1116–1122. https://doi.org/10.1289/ehp.1104489
CAS
Article
PubMed
PubMed Central
Google Scholar
Zimmer B, Pallocca G, Dreser N et al (2014) Profiling of drugs and environmental chemicals for functional impairment of neural crest migration in a novel stem cell-based test battery. Arch Toxicol 88(5):1109–1126. https://doi.org/10.1007/s00204-014-1231-9
CAS
Article
PubMed
PubMed Central
Google Scholar