Skip to main content

Advertisement

Log in

Bisphenol A alteration of type 1 diabetes in non-obese diabetic (NOD) female mice is dependent on window of exposure

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic β-cell destruction can be mediated by dysbiosis, infiltration of pro-inflammatory immune cells, and cytokines/chemokines. Exposure to bisphenol A (BPA), an endocrine disruptor (ED), can lead to aberrant immunity and gut microbiota. We determined whether BPA had age-dependent effects on T1D by modulating immune homeostasis following various windows of exposure in non-obese diabetic (NOD) mice. Juvenile NOD females were orally exposed to 0 or 30 µg BPA/kg BW from postnatal day (PND) 28 to PND56. Adult NOD females were exposed to 0 or 300 µg BPA/kg BW. Female and male NOD offspring were exposed to 0 or 300 µg BPA/kg BW perinatally from gestation day 5 to PND28 by dosing the dams. It was found that BPA increased T1D risk in juvenile females with gut microbiota shifted towards pro-inflammation (e.g. increased Jeotgalicoccus). In agreement with our previous study, adult females had a trend of increased T1D and a general increase in immune responses. However, female offspring had a reduced T1D development. Consistently, female offspring had a shift towards anti-inflammation (e.g. decreased pro-inflammatory F4/80+Gr1+ cells). In contrast, BPA had minimal effects on immunity and T1D in male offspring. Thus, it was concluded that BPA had age- and sex-dependent effects on T1D with the alteration of gut microbiota and inflammation being the primary mechanisms for T1D exacerbation in juvenile exposure and decreases of inflammation being responsible for attenuated T1D in perinatally exposed females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. The Lancet 383:69–82

    Article  Google Scholar 

  • Bao M, Yang Y, Jun H-S, Yoon J-W (2002) Molecular mechanisms for gender differences in susceptibility to T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol 168:5369–5375

    Article  CAS  PubMed  Google Scholar 

  • Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beydoun HA, Khanal S, Zonderman AB, Beydoun MA (2014) Sex differences in the association of urinary bisphenol-A concentration with selected indices of glucose homeostasis among US adults. Ann Epidemiol 24:90–97

    Article  PubMed  Google Scholar 

  • Bobbala D, Mayhue M, Menendez A, Ilangumaran S, Ramanathan S (2017) Trans-presentation of interleukin-15 by interleukin-15 receptor alpha is dispensable for the pathogenesis of autoimmune type 1 diabetes. Cell Mol Immunol 14:590

    Article  CAS  PubMed  Google Scholar 

  • Bodin J, Bolling AK, Samuelsen M, Becher R, Lovik M, Nygaard UC (2013) Long-term bisphenol A exposure accelerates insulitis development in diabetes-prone. NOD Mice Immunopharmacol Immunotoxicol 35:349–358. https://doi.org/10.3109/08923973.2013.772195

    Article  CAS  PubMed  Google Scholar 

  • Bodin J, Bolling AK, Becher R, Kuper F, Lovik M, Nygaard UC (2014) Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice. Toxicol Sci 137:311–323. https://doi.org/10.1093/toxsci/kft242

    Article  CAS  PubMed  Google Scholar 

  • Bodin J et al (2015) Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice. Toxicol Rep 2:99–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown CT et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PloS One 6:e25792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cetkovic-Cvrlje M, Thinamany S, Bruner KA (2017) Bisphenol A (BPA) aggravates multiple low-dose streptozotocin-induced Type 1 diabetes in C57BL/6 mice. J Immunotoxicol 14:160–168

    Article  CAS  PubMed  Google Scholar 

  • Chao GY, Wallis RH, Marandi L, Ning T, Sarmiento J, Paterson AD, Poussier P (2014) Iddm30 controls pancreatic expression of Ccl11 (Eotaxin) and the Th1/Th2 balance within the insulitic lesions. J Immunol 192:3645–3653

    Article  CAS  PubMed  Google Scholar 

  • Chen KL, Madak-Erdogan Z (2016) Estrogen and microbiota crosstalk: should we pay attention? Trends Endocrinol Metab 27:752–755

    Article  CAS  PubMed  Google Scholar 

  • Chen C, You L-J, Huang Q, Fu X, Zhang B, Liu R-H, Li C (2018a) Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic db/db mice. Food Function 9:3732–3742

    Article  CAS  PubMed  Google Scholar 

  • Chen Y-G, Mathews CE, Driver JP (2018b) the role of NOD mice in type 1 diabetes research: lessons from the past and recommendations for the future. Front Endocrinol 9:51

    Article  Google Scholar 

  • Cui X-B, Luan J-N, Ye J, Chen S-Y (2015) RGC32 deficiency protects against high-fat diet-induced obesity and insulin resistance in mice. J Endocrinol 224:127–137

    Article  CAS  PubMed  Google Scholar 

  • D’Alise AM, Auyeung V, Feuerer M, Nishio J, Fontenot J, Benoist C, Mathis D (2008) The defect in T-cell regulation in NOD mice is an effect on the T-cell effectors. Proc Natl Acad Sci 105:19857–19862

    Article  PubMed  PubMed Central  Google Scholar 

  • Delclos KB, Camacho L, Lewis SM, Vanlandingham MM, Latendresse JR, Olson GR, Davis KJ, Patton RE, Gamboa da Costa G, Woodling KA, Bryant MS, Chidambaram M, Trbojevich R, Juliar BE, Felton RP, Thorn BT (2014) Toxicity evaluation of bisphenol A administered by gavage to Sprague-Dawley rats from gestation day 6 through postnatal day 90. Toxicol Sci 139:174–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosn EEB et al (2010) Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Acad Sci 107:2568–2573

    Article  PubMed  PubMed Central  Google Scholar 

  • Gülden E et al (2018) TRIF deficiency protects non-obese diabetic mice from type 1 diabetes by modulating the gut microbiota and dendritic cells. J Autoimmun 93:57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo TL, Wang Y, Xiong T, Ling X, Zheng J (2014) Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet. Toxicol Appl Pharmacol 280:455–466. https://doi.org/10.1016/j.taap.2014.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haller MJ et al (2016) Anti-thymocyte globulin + G-CSF combination therapy leads to sustained immunomodulatory and metabolic effects in a subset of responders with established type 1 diabetes Diabetes:db160823

  • Huang G, Xu J, Lefever DE, Glenn TC, Nagy T, Guo TL (2017) Genistein prevention of hyperglycemia and improvement of glucose tolerance in adult non-obese diabetic mice are associated with alterations of gut microbiome and immune homeostasis. Toxicol Appl Pharmacol. https://doi.org/10.1016/j.taap.2017.04.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Huxley RR, Peters SA, Mishra GD, Woodward M (2015) Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 3:198–206. https://doi.org/10.1016/s2213-8587(14)70248-7

    Article  PubMed  Google Scholar 

  • İnce T, Balcı A, Yalçın SS, Özkemahlı G, Erkekoglu P, Kocer-Gumusel B, Yurdakök K (2018) Urinary bisphenol-A levels in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 31:829–836

    Article  CAS  PubMed  Google Scholar 

  • Javurek AB, Spollen WG, Johnson SA, Bivens NJ, Bromert KH, Givan SA, Rosenfeld CS (2016) Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes 7:471–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SA et al (2016) Effects of developmental exposure to bisphenol A on spatial navigational learning and memory in rats: A CLARITY-BPA study. Hormones Behavior 80:139–148

    Article  CAS  PubMed  Google Scholar 

  • Jörns A et al (2014) Islet infiltration, cytokine expression and beta cell death in the NOD mouse, BB rat, Komeda rat, LEW. 1AR1-iddm rat and humans with type 1 diabetes. Diabetologia 57:512–521

    Article  CAS  PubMed  Google Scholar 

  • Kharrazian D (2014) The potential roles of bisphenol A (BPA) pathogenesis in autoimmunity. Autoimmune Dis 2014:743616

    PubMed  PubMed Central  Google Scholar 

  • Koestel ZL et al (2017) Bisphenol A (BPA) in the serum of pet dogs following short-term consumption of canned dog food and potential health consequences of exposure to BPA. Sci Total Environ 579:1804–1814

    Article  CAS  PubMed  Google Scholar 

  • Krych Ł, Nielsen DS, Hansen AK, Hansen CHF (2015) Gut microbial markers are associated with diabetes onset, regulatory imbalance, and IFN-γ level in NOD. Mice Gut Microbes 6:101–109

    Article  CAS  PubMed  Google Scholar 

  • Lai K-P, Chung Y-T, Li R, Wan H-T, Wong CK-C (2016) Bisphenol A alters gut microbiome. Comp Metagenom Anal Environ Pollut 218:923–930

    Article  CAS  Google Scholar 

  • Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, Melzer D (2008) Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. Jama 300:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Liu J et al (2013) Perinatal bisphenol A exposure and adult glucose homeostasis: identifying critical windows of exposure. PloS One 8:e64143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yao Y, Li H, Qiao F, Wu J, Du Z-y, Zhang M (2016) Influence of endogenous and exogenous estrogenic endocrine on intestinal microbiota in zebrafish. PloS one 11:e0163895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F et al (2017) Dysbiosis of urinary microbiota is positively correlated with type 2 diabetes mellitus. Oncotarget 8:3798

    PubMed  Google Scholar 

  • Mao S, Zhang R, Wang D, Zhu W (2012) The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Veterinary Res 8:237

    Article  Google Scholar 

  • Marietta EV et al (2013) Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PloS One 8:e78687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overgaard NH, Jung JW, Steptoe RJ, Wells JW (2015) CD4+/CD8 + double-positive T cells: more than just a developmental stage? J Leukocyte Biol 97:31–38

    Article  CAS  PubMed  Google Scholar 

  • Primec M, Klemenak M, Di Gioia D, Aloisio I, Bozzi Cionci N, Quagliariello A, Gorenjak M, Mičetić-Turk D, Langerholc T (2018) Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF-α and short-chain fatty acids. Clin Nutr. https://doi.org/10.1016/j.clnu.2018.06.931

    Article  PubMed  Google Scholar 

  • Reddivari L et al (2017) Perinatal bisphenol A exposure induces chronic inflammation in rabbit offspring via modulation of gut bacteria and their metabolites. MSystems 2:e00093-00017

    Article  Google Scholar 

  • Ruhlen RL et al (2008) Low phytoestrogen levels in feed increase fetal serum estradiol resulting in the” fetal estrogenization syndrome” and obesity in CD-1 mice. Environ Health Persp 116:322

    Article  CAS  Google Scholar 

  • Sheng Y, Zheng S, Zhang C, Zhao C, He X, Xu W, Huang K (2018) Mulberry leaf tea alleviates diabetic nephropathy by inhibiting PKC signaling and modulating intestinal flora. J Funct Foods 46:118–127

    Article  CAS  Google Scholar 

  • Taylor JA et al (2011) Similarity of bisphenol A pharmacokinetics in rhesus monkeys and mice: relevance for human exposure. Environ Health Persp 119:422

    Article  CAS  Google Scholar 

  • Tuller T, Atar S, Ruppin E, Gurevich M, Achiron A (2013) Common and specific signatures of gene expression and protein–protein interactions in autoimmune diseases. Genes Immun 14:67

    Article  CAS  PubMed  Google Scholar 

  • Tuomilehto J (2013) The emerging global epidemic of type 1 diabetes. Curr Diabetes Rep 13:795–804

    Article  CAS  Google Scholar 

  • Winer DA et al (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17:610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Huang G, Guo TL (2016) Developmental bisphenol A exposure modulates immune-related diseases. Toxics. https://doi.org/10.3390/toxics4040023

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Huang G, Nagy T, Teng Q, Guo TL (2019) Sex-dependent effects of bisphenol A on type 1 diabetes development in non-obese diabetic (NOD) mice. Arch Toxicol. https://doi.org/10.1007/s00204-018-2379-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshino S, Yamaki K, Yanagisawa R, Takano H, Hayashi H, Mori Y (2003) Effects of bisphenol A on antigen-specific antibody production, proliferative responses of lymphoid cells, and TH1 and TH2 immune responses in mice. Br J Pharmacol 138:1271–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshino S et al (2004) Prenatal exposure to bisphenol A up-regulates immune responses, including T helper 1 and T helper 2 responses in mice. Immunology 112:489–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young EF, Hess PR, Arnold LW, Tisch R, Frelinger JA (2009) Islet lymphocyte subsets in male and female NOD mice are qualitatively similar but quantitatively distinct. Autoimmunity 42:678–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan M, Hu M, Lou Y, Wang Q, Mao L, Zhan Q, Jin F (2018) Environmentally relevant levels of bisphenol A affect uterine decidualization and embryo implantation through the estrogen receptor/serum and glucocorticoid-regulated kinase 1/epithelial sodium ion channel α-subunit pathway in a mouse model. Fertil Steril 109:735–744 (e731)

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Londono P, Yu L, Grimes S, Blackburn P, Gottlieb P, Eisenbarth GS (2014) MAS-1 adjuvant immunotherapy generates robust Th2 type and regulatory immune responses providing long-term protection from diabetes in late-stage pre-diabetic NOD mice. Autoimmunity 47:341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhernakova A et al (2006) Genetic variants of RANTES are associated with serum RANTES level and protection for type 1 diabetes. Genes Immun 7:544

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Nyman M, Fåk F (2015) Modulation of gut microbiota in rats fed high-fat diets by processing whole-grain barley to barley malt. Mol Nutr Food Res 59:2066–2076

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Krzysztof Czaja’s lab for helping measure the male offspring body fat with their Minispec LF110 BAC Analyzer. This study was supported by National Institutes of Health (NIH) R21ES24487, and in part by NIH R41AT009523 and Interdisciplinary Toxicology Program at University of Georgia (UGA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai L. Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1427 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Huang, G., Nagy, T. et al. Bisphenol A alteration of type 1 diabetes in non-obese diabetic (NOD) female mice is dependent on window of exposure. Arch Toxicol 93, 1083–1093 (2019). https://doi.org/10.1007/s00204-019-02419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02419-4

Keywords

Navigation