Skip to main content
Log in

Sex-dependent effects of bisphenol A on type 1 diabetes development in non-obese diabetic (NOD) mice

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Type 1 diabetes (T1D) is an autoimmune disease caused by immune-mediated pancreatic β-cell destruction. The endocrine disrupting chemical bisphenol A (BPA) has widespread human exposure and can modulate immune function and the gut microbiome (GMB), which may contribute to the increasing T1D incidence worldwide. It was hypothesized that BPA had sex-dependent effects on T1D by modulating immune homeostasis and GMB. Adult female and male non-obese diabetic (NOD) mice were orally administered BPA at environmentally relevant doses (30 or 300 µg/kg). Antibiotic-treated adult NOD females were exposed to 0 or 30 µg/kg BPA. BPA accelerated T1D development in females, but delayed males from T1D. Consistently, females had a shift towards pro-inflammation (e.g., increased macrophages and Bacteroidetes), while males had increases in anti-inflammatory immune factors and a decrease in both anti- and pro-inflammatory GMB. Although bacteria altered during sub-acute BPA exposure differed from bacteria altered from chronic BPA exposure in both sexes, the GMB profile was consistently pro-inflammatory in females, while males had a general decrease of both anti- and pro-inflammatory gut microbes. However, treatment of females with the antibiotic vancomycin failed to prevent BPA-induced glucose intolerance, suggesting changes in Gram-positive bacteria were not a primary mechanism. In conclusion, BPA exposure was found to have sex dimorphic effects on T1D with detrimental effects in females, and immunomodulation was identified as the primary mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abo T, Tomiyama C, Watanabe H (2012) Biology of autoreactive extrathymic T cells and B-1 cells of the innate immune system. Immunol Res 52:224–230

    Article  CAS  PubMed  Google Scholar 

  • Alnek K, Kisand K, Heilman K, Peet A, Varik K, Uibo R (2015) Increased blood levels of growth factors, proinflammatory cytokines, and Th17 cytokines in patients with newly diagnosed type 1 diabetes PloS One 10:e0142976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barthson J et al (2011) Cytokines tumor necrosis factor-α and interferon-γ induce pancreatic β-cell apoptosis through STAT1-mediated Bim protein activation. J Biol Chem 286:39632–39643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation Cell 157:121–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergman A et al (2013) The impact of endocrine disruption: a consensus statement on the state of the science. Environ Health Perspect 121:A104–A106. https://doi.org/10.1289/ehp.1205448

    Article  PubMed  PubMed Central  Google Scholar 

  • Beydoun HA, Khanal S, Zonderman AB, Beydoun MA (2014) Sex differences in the association of urinary bisphenol-A concentration with selected indices of glucose homeostasis among US adults. Ann Epidemiol 24:90–97

    Article  PubMed  Google Scholar 

  • Bisikirska B, Colgan J, Luban J, Bluestone JA, Herold KC (2005) TCR stimulation with modified anti-CD3 mAb expands CD8 + T cell population and induces CD8 + CD25 + Tregs. J Clin Investig 115:2904–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodin J, Bolling AK, Samuelsen M, Becher R, Lovik M, Nygaard UC (2013) Long-term bisphenol A exposure accelerates insulitis development in diabetes-prone NOD mice Immunopharmacol Immunotoxicol 35:349–358. https://doi.org/10.3109/08923973.2013.772195

    Article  CAS  PubMed  Google Scholar 

  • Bodin J, Bolling AK, Becher R, Kuper F, Lovik M, Nygaard UC (2014) Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice. Toxicol Sci 137:311–323. https://doi.org/10.1093/toxsci/kft242

    Article  CAS  PubMed  Google Scholar 

  • Brown CT et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes PloS One 6:e25792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL (2005) Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect 113:391–395

    Article  CAS  PubMed  Google Scholar 

  • Cardozo AK, Proost P, Gysemans C, Chen MC, Mathieu C, Eizirik DL (2003) IL-1beta and IFN-gamma induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice Diabetologia 46:255–266. https://doi.org/10.1007/s00125-002-1017-0

    Article  CAS  PubMed  Google Scholar 

  • Cetkovic-Cvrlje M, Thinamany S, Bruner KA (2017) Bisphenol A (BPA) aggravates multiple low-dose streptozotocin-induced type 1 diabetes in C57BL/6 mice. J Immunotoxicol 14:160–168

    Article  CAS  PubMed  Google Scholar 

  • Chiang JL, Kirkman MS, Laffel LM, Peters AL (2014) Type 1 diabetes through the life span: a position statement of the American Diabetes Association Diabetes Care 37:2034–2054

    Article  PubMed  PubMed Central  Google Scholar 

  • Codella R et al (2015) Moderate intensity training impact on the inflammatory status and glycemic profiles in NOD mice. J Diabetes Res 2015:737586. https://doi.org/10.1155/2015/737586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins AM (2016) IgG subclass co-expression brings harmony to the quartet model of murine IgG function. Immunol Cell Biol 94:949–954

    Article  CAS  PubMed  Google Scholar 

  • Cui X-B, Luan J-N, Ye J, Chen S-Y (2015) RGC32 deficiency protects against high-fat diet-induced obesity and insulin resistance in mice. J Endocrinol 224:127–137

    Article  CAS  PubMed  Google Scholar 

  • de Goffau MC et al (2014) Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 57:1569–1577

    Article  CAS  PubMed  Google Scholar 

  • Devaraj S, Tobias P, Jialal I (2011) Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes Cytokine 55:441–445

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Gilbert R, Liu E D (2013) Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev 9:25–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Glenn TC et al (2016) Adapterama I: universal stubs and primers for thousands of dual-indexed Illumina libraries (iTru & iNext). BioRxiv. https://doi.org/10.1101/049114

    Article  Google Scholar 

  • Guo TL, Wang Y, Xiong T, Ling X, Zheng J (2014) Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet. Toxicol Appl Pharmacol 280:455–466. https://doi.org/10.1016/j.taap.2014.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Liu CQ, Shan CX, Chen Y, Li HH, Huang ZP, Zou DJ (2016) Gut microbiota after Roux-en-Y gastric bypass and sleeve gastrectomy in a diabetic rat model: increased diversity and associations of discriminant genera with metabolic changes Diabetes Metab Res Rev 33:e2857

    Article  CAS  Google Scholar 

  • Hansen CHF et al (2012) Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse Diabetologia 55:2285–2294

    Article  CAS  PubMed  Google Scholar 

  • Hansen CH et al (2014) A maternal gluten-free diet reduces inflammation and diabetes incidence in the offspring of NOD mice. Diabetes 63:DB_131612

    Article  CAS  Google Scholar 

  • Huang G, Xu J, Lefever DE, Glenn TC, Nagy T, Guo TL (2017) Genistein prevention of hyperglycemia and improvement of glucose tolerance in adult non-obese diabetic mice are associated with alterations of gut microbiome and immune homeostasis Toxicol Appl Pharmacol https://doi.org/10.1016/j.taap.2017.04.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Huxley RR, Peters SA, Mishra GD, Woodward M (2015) Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 3:198–206. https://doi.org/10.1016/s2213-8587(14)70248-7

    Article  PubMed  Google Scholar 

  • Javurek AB, Spollen WG, Johnson SA, Bivens NJ, Bromert KH, Givan SA, Rosenfeld CS (2016) Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes 7:471–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SA et al (2016) Effects of developmental exposure to bisphenol A on spatial navigational learning and memory in rats: a CLARITY-BPA study. Horm Behav 80:139–148

    Article  CAS  PubMed  Google Scholar 

  • Jörns A et al (2014) Islet infiltration, cytokine expression and beta cell death in the NOD mouse, BB rat, Komeda rat, LEW. 1AR1-iddm rat and humans with type 1 diabetes Diabetologia 57:512–521

    Article  CAS  PubMed  Google Scholar 

  • Kaplan C, Valdez JC, Chandrasekaran R, Eibel H, Mikecz K, Glant TT, Finnegan A (2001) Th1 and Th2 cytokines regulate proteoglycan-specific autoantibody isotypes and arthritis. Arthritis Res Ther 4:54

    Article  Google Scholar 

  • Knip M, Siljander H (2016) The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol 12:154

    Article  CAS  PubMed  Google Scholar 

  • Krych Ł, Nielsen DS, Hansen AK, Hansen CHF (2015) Gut microbial markers are associated with diabetes onset, regulatory imbalance, and IFN-γ level in NOD Mice Gut Microbes 6:101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai K-P, Chung Y-T, Li R, Wan H-T, Wong CK-C (2016) Bisphenol A alters gut microbiome. Comparative metagenomics analysis Environ Pollut 218:923–930

    Article  CAS  PubMed  Google Scholar 

  • Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, Melzer D (2008) Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults Jama 300:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Leeth CM et al (2016) B-Lymphocytes expressing an Ig specificity recognizing the pancreatic β-cell autoantigen peripherin are potent contributors to type 1 diabetes development in. NOD mice Diabetes 65:1977–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefever DE, Xu J, Chen Y, Huang G, Tamas N, Guo TL (2016) TCDD modulation of gut microbiome correlated with liver and immune toxicity in streptozotocin (STZ)-induced hyperglycemic mice Toxicol Appl Pharmacol 304:48–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yao Y, Li H, Qiao F, Wu J, Du Z-y, Zhang M (2016) Influence of endogenous and exogenous estrogenic endocrine on intestinal microbiota in zebrafish PloS One 11:e0163895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaisé Y et al (2017) Gut dysbiosis and impairment of immune system homeostasis in perinatally-exposed mice to bisphenol A precede obese phenotype development. Sci Rep 7:14472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markle JG et al (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity Science 339:1084–1088

    Article  CAS  PubMed  Google Scholar 

  • Martin RM, Brady JL, Lew AM (1998) The need for IgG2c specific antiserum when isotyping antibodies from C57BL/6 and NOD mice. J Immunol Methods 212:187–192

    Article  CAS  PubMed  Google Scholar 

  • Nadal A et al (2017) Extranuclear-initiated estrogenic actions of endocrine disrupting chemicals: is there toxicology beyond paracelsus? J Steroid Biochem Mol Biol. https://doi.org/10.1016/j.jsbmb.2017.01.014

    Article  PubMed  Google Scholar 

  • Pitkäniemi J, Onkamo P, Tuomilehto J, Arjas E (2004) Increasing incidence of type 1 diabetes—role for genes? BMC Genet 5:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubin BS, Paranjpe M, DaFonte T, Schaeberle C, Soto AM, Obin M, Greenberg AS (2017) Perinatal BPA exposure alters body weight and composition in a dose specific and sex specific manner: the addition of peripubertal exposure exacerbates adverse effects in female mice. Reprod Toxicol 68:130–144

    Article  CAS  PubMed  Google Scholar 

  • Ryba-Stanislawowska M, Werner P, Brandt A, Mysliwiec M, Mysliwska J (2016) Th9 and Th22 immune response in young patients with type 1 diabetes Immunol Res 64:730–735. https://doi.org/10.1007/s12026-015-8765-7

    Article  CAS  PubMed  Google Scholar 

  • Scinicariello F, Buser MC (2016) Serum testosterone concentrations and urinary bisphenol A, benzophenone-3, triclosan, and paraben levels in male and female children and adolescents: NHANES 2011–2012. Environ Health Perspect 124:1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation Genome Biol 12:R60 https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  • Susiarjo M, Xin F, Bansal A, Stefaniak M, Li C, Simmons RA, Bartolomei MS (2015) Bisphenol a exposure disrupts metabolic health across multiple generations in the mouse Endocrinology 156:2049–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JA et al (2011) Similarity of bisphenol A pharmacokinetics in rhesus monkeys and mice: relevance for human exposure. Environ Health Perspect 119:422

    Article  CAS  PubMed  Google Scholar 

  • Todd I, Davenport C, Topping JH, Wood PJ (1998) IgG2a antibodies non-specifically delay the onset of diabetes in NOD mice Autoimmunity 27:209–211

    Article  CAS  PubMed  Google Scholar 

  • Tuller T, Atar S, Ruppin E, Gurevich M, Achiron A (2013) Common and specific signatures of gene expression and protein–protein interactions in autoimmune diseases. Genes Immun 14:67–82

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Huang G, Guo TL (2016) Developmental bisphenol A exposure modulates. Immune Relat Dis Toxics 4:23

    Google Scholar 

  • Yoshino S, Yamaki K, Yanagisawa R, Takano H, Hayashi H, Mori Y (2003) Effects of bisphenol A on antigen-specific antibody production, proliferative responses of lymphoid cells, and TH1 and TH2 immune responses in mice. Br J Pharmacol 138:1271–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young EF, Hess PR, Arnold LW, Tisch R, Frelinger JA (2009) Islet lymphocyte subsets in male and female NOD mice are qualitatively similar but quantitatively distinct Autoimmunity 42:678–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Daniel E. Lefever, Dr. Travis Glenn and his lab members, and the Georgia Genomics and Bioinformatics Core of UGA for their help with the 16S rRNA library preparation, sequencing and bioinformatics analysis, and CVM Cytometry Core Facility (the College of Veterinary Medicine, UGA) for assisting flow cytometric analysis. This study was supported by NIH R21ES24487, and in part by NIH R41AT009523 and Interdisciplinary Toxicology Program at University of Georgia (UGA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai L. Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 991 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Huang, G., Nagy, T. et al. Sex-dependent effects of bisphenol A on type 1 diabetes development in non-obese diabetic (NOD) mice. Arch Toxicol 93, 997–1008 (2019). https://doi.org/10.1007/s00204-018-2379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-018-2379-5

Keywords

Navigation