Skip to main content
Log in

Expression of Neuropathy Target Esterase in mouse embryonic stem cells during differentiation

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Neuropathy Target Esterase (NTE) was initially identified as the primary target esterase of some organophosphorus compounds that cause delayed neuropathy. Some studies in vivo suggest that this protein may also perform a function in embryonic development and therefore also in cell differentiation. The aim of this work was to characterize embryonic stem cells (ESC) as cellular model before to approach to the role of NTE in embryotoxicity processes through mechanistic studies. Mouse D3 ESC in monolayer expressed an NTE activity of 23 nmol phenol/min/mg of protein, while mouse R1 ESC showed a specific NTE activity 3 times higher than D3. An increased expression of gene Pnpla6 (that codifies for NTE) was seen during differentiation in both the D3 cells in monolayer and embryonic bodies (EBS). The maximums of the Pnpla6 expression were reached after 30 h and 5 days of differentiation in monolayer and EBS cultures, respectively. This peak of the Pnpla6 expression correlated with the peak of the NTE enzymatic activity in D3 monolayers. NTE activity and Pnpla6 expression returned to basal levels after 48 h (in monolayer cultures) and 10 days (in EBS) of differentiation, respectively. The changes in the Pnpla6 expression did not correlate with changes noted in the expression of two endoderm, two ectoderm and one neuroectoderm gene markers. In conclusion, this manuscript reports about NTE expression in ESC and its variation during first stages of differentiation. Nevertheless, the role of this activity and the meaning of the variations detected during differentiation must be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A-activity:

Total phenyl valerate esterase activity

Afp:

Alpha-fetoprotein

Amn:

Amnionless

B-activity:

Phenyl valerate esterase activity resistant to 40 µM paraoxon

C-activity:

Phenyl valerate esterase activity resistant to 40 µM paraoxon plus 250 µM mipafox

EBS:

Embryonic bodies

ESC:

Embryonic stem cells

LIF:

Leukemia inhibitory factor

MHC:

Myosin heavy chain

Nefm:

Intermediate neurofilament

NTE:

Neuropathy target esterase

PV:

Phenyl valerate

PVase:

Phenyl valerate esterase

qRT–PCR:

Quantitative real-time PCR, RT–PCR, conventional real-time PCR

References

  • Adewumi O, Aflatoonian B, Ahrlund-Richter L (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25:803–816

    Article  CAS  PubMed  Google Scholar 

  • Barril JB, Vilanova E, Pellín MC (1988) Sciatic-nerve neuropathy target esterase—methods of assay, proximo-distal distribution and regeneration. Toxicology 49:107–114

    Article  CAS  PubMed  Google Scholar 

  • Barril J, Estévez J, Escudero MA, Céspedes MV, Ñiguez N, Sogorb MA, Monroy A, Vilanova E (1998) Peripheral nerve soluble esterases are spontaneously reactivated after inhibition by paraoxon: implications for a new definition of neuropathy target esterase. Chem Biol Interact 119–120:541–550

    Google Scholar 

  • Bevington PR (1969) Data reductions and error analisis for the physical sciences. Mc Graw Hill, New York

    Google Scholar 

  • Carrington CD, Abou-Donia MB (1985) Paraoxon reversibly inhibits neurotoxic esterase. Toxicol Appl Pharmacol 79:175–178

    Article  CAS  PubMed  Google Scholar 

  • Chang PA, Sun Q, Ni XM, Qv FQ, Wu YJ, Song FZ (2008) Molecular cloning and expression analysis of cDNA ends of chicken neuropathy target esterase. Chem Biol Interact 172:54–62

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Correll L, Ehrich M (1987) Comparative sensitivities of avian neural esterases to invitro inhibition by organophosphorus compounds. Toxicol Lett 36:197–204

    Article  CAS  PubMed  Google Scholar 

  • Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem-cell lines—formation of visceral yolk-sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45

    CAS  PubMed  Google Scholar 

  • Ehrich M, Correll L, Veronesi B (1997) Acetylcholinesterase and neuropathy target esterase inhibitions in neuroblastoma cells to distinguish organophosphorus compounds causing acute and delayed neurotoxicity. Fundam Appl Toxicol 38(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Ensenat-Waser R, Vicente-Salar ASN, Cigudosa JC, Roche E, Soria B, Reig JA (2006) Isolation and characterization of residual undifferentiated mouse embryonic stem cells from embryoid body cultures by fluorescence tracking. In Vitro Cell Dev Biol Anim 42:115–123

    Article  CAS  PubMed  Google Scholar 

  • Estévez J, Vilanova E (2009) Model equations for the kinetics of covalent irreversible enzyme inhibition and spontaneous reactivation: esterases and organophosphorus compounds. Crit Rev Toxicol 39(5):427–448

    Article  PubMed  Google Scholar 

  • Glynn P (2003) NTE: one target protein for different toxic syndromes with distinct mechanisms. Bioessays 25:742–745

    Article  PubMed  Google Scholar 

  • Johnson MK (1969) The delayed neurotoxic effect of some organophosphorus compounds: identification of the phosphorylation site as an esterase. Biochem J 114:711–714

    CAS  PubMed  Google Scholar 

  • Johnson MK (1977) Improved assay of neurotoxic esterase for screening organophosphates for delayed neurotoxicity potential. Arch Toxicol 37:113–115

    Article  CAS  PubMed  Google Scholar 

  • Kalantry S, Manning S, Haub O, Tomihara-Newberger C, Lee HG, Fangman J, Disteche CM, Manova K, Lacy E (2001) The amnionless gene, essential for mouse gastrulation, encodes a visceral-endoderm-specific protein with an extracellular cysteine-rich domain. Nat Genet 27:412–416

    Article  CAS  PubMed  Google Scholar 

  • Li WW, Casida JE (1997) Actions of two highly potent organophosphorus neuropathy target esterase inhibitors in mammalian cell lines. Toxicol Lett 92:123–130

    Article  CAS  PubMed  Google Scholar 

  • Li WW, Casida JE (1998) Organophosphorus neuropathy target esterase inhibitors selectively block outgrowth of neurite-like and cell processes in cultured cells. Toxicol Lett 98:139–146

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCt) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Moser M, Stempfl T, Li Y, Glynn P, Buttner R, Kretzschmar D (2000) Cloning and expression of the murine sws/NTE gene. Mech Dev 90:279–282

    Article  CAS  PubMed  Google Scholar 

  • Moser M, Li Y, Vaupel K, Kretzschmar D, Kluge R, Glynn P, Buettner R (2004) Placental failure and impaired vasculogenesis result in embryonic lethality for neuropathy target esterase-deficient mice. Mol Cell Biol 24:1667–1679

    Article  CAS  PubMed  Google Scholar 

  • Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells (pluripotency/tetraploid embryos/chimeras). Proc Natl Acad Sci USA 90:8424–8428

    Article  CAS  PubMed  Google Scholar 

  • Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, Yamanaka S, Yamashita JK (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118:498–506

    Article  PubMed  Google Scholar 

  • O’Connor MD, Kardel MD, Iosfina I, Youssef D, Lu M, Li MM, Vercauteren S, Nagy A, Eaves CJ (2008) Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells 26:1109–1116

    Article  PubMed  Google Scholar 

  • O’Shea KS (2001) Directed differentiation of embryonic stem cells: genetic and epigenetic methods. Wound Repair Regen 9:443–459

    Article  PubMed  Google Scholar 

  • Quesada E, Sogorb MA, Vilanova E, Carrera V (2004) Bovine chromaffin cell cultures as model to study organophosphorus neurotoxicity. Toxicol Lett 151:163–170

    Article  CAS  PubMed  Google Scholar 

  • Quesada E, Sabater E, Sogorb MA, Vilanova E, Carrera V (2007) Recovery of neuropathy target esterase activity after inhibition with mipafox and O-hexyl O-2, 5-dichlorophenyl phosphoramidate in bovine chromaffin cell cultures. Chem Biol Interact 165:99–105

    Article  CAS  PubMed  Google Scholar 

  • Read DJ, Li Y, Chao MV, Cavanagh JB, Glynn P (2009) Neuropathy Target Esterase is required for adult vertebrate axon maintenance. J Neurosci 29:11594–11600

    Article  CAS  PubMed  Google Scholar 

  • Reiner E, Davis CS, Schwab BW, Schopfer LM, Richardson RJ (1987) Kinetics of heat inactivation of phenyl valerate hydrolases from hen and rat-brain. Biochem Pharmacol 36:3181–3185

    Article  CAS  PubMed  Google Scholar 

  • Roche E, Sepulcre P, Reig JA, Santana A, Soria B (2005) Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells. FASEB J 19(10):1341–1343

    CAS  PubMed  Google Scholar 

  • Romero D, Quesada E, Sogorb MA, García-Fernández AJ, Vilanova E, Carrera V (2006) Comparison of chromaffin cells from several animal sources for their use as an in vitro model to study the mechanism of organophosphorus toxicity. Toxicol Lett 165:221–229

    Article  CAS  PubMed  Google Scholar 

  • Sogorb MA, Viniegra S, Reig JA, Vilanova E (1994) Partial characterization of neuropathy target esterase and related phenyl valerate esterases from bovine adrenal-medulla. J Biochem Toxicol 9:145–152

    Article  CAS  PubMed  Google Scholar 

  • Sogorb MA, Vilanova E, Quintanar JL, Viniegra S (1996) Bovine chromaffin cells in culture show carboxylesterase activities sensitive to organophosphorus compounds. Int J Biochem Cell Biol 28:983–989

    Article  CAS  PubMed  Google Scholar 

  • Stummanna TC, Hareng L, Bremer S (2009) Hazard assessment of methylmercury toxicity to neuronal induction in embryogenesis using human embryonic stem cells. Toxicology 257:117–126

    Article  Google Scholar 

  • Tormo N, Gimeno JR, Sogorb MA, Diaz-Alejo N, Vilanova E (1993) Soluble and particulate organophosphorus neuropathy target esterase in brain and sciatic-nerve of the hen, cat, rat, and chick. J Neurochem 61:2164–2168

    Article  CAS  PubMed  Google Scholar 

  • Toyooka Y, Tsunekawa N, Akasu R, Noce T (2003) Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA 100:11457–11462

    Article  CAS  PubMed  Google Scholar 

  • Vilanova E, Barril J, Carrera V, Pellín MC (1990) Soluble and particulate forms of the organophosphorus neuropathy target esterase in hen sciatic-nerve. J Neurochem 55:1258–1265

    Article  CAS  PubMed  Google Scholar 

  • Williams DG (1983) Intramolecular group transfer is a characteristic of neurotoxic esterase and is independent of the tissue source of the enzyme—a comparison of the aging behavior of diisopropyl phosphorofluoridate-labeled proteins in brain, spinal-cord, liver, kidney and spleen from hen and in human-placenta. Biochem J 209:817–829

    CAS  PubMed  Google Scholar 

  • Winrow CJ, Hemming ML, Allen DM, Quistad GB, Casida JE, Barlow C (2003) Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nat Genet 33:477–485

    Article  CAS  PubMed  Google Scholar 

  • Yasunaga M, Tada S, Nishikawa ST, Nakano Y, Okada M, Jakt LM, Nishikawa S, Chiba T, Era T, Nishikawa SI (2005) Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 23:1542–1550

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Spanish Ministry of the Environment (Grant A051/2007/3-14.4).

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Sogorb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pamies, D., Reig, J.A., Vilanova, E. et al. Expression of Neuropathy Target Esterase in mouse embryonic stem cells during differentiation. Arch Toxicol 84, 481–491 (2010). https://doi.org/10.1007/s00204-010-0518-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0518-8

Keywords

Navigation