Skip to main content

Advertisement

Log in

Genome mining of ascomycetous fungi reveals their genetic potential for ergot alkaloid production

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Ergot alkaloids are important as mycotoxins or as drugs. Naturally occurring ergot alkaloids as well as their semisynthetic derivatives have been used as pharmaceuticals in modern medicine for decades. We identified 196 putative ergot alkaloid biosynthetic genes belonging to at least 31 putative gene clusters in 31 fungal species by genome mining of the 360 available genome sequences of ascomycetous fungi with known proteins. Detailed analysis showed that these fungi belong to the families Aspergillaceae, Clavicipitaceae, Arthrodermataceae, Helotiaceae and Thermoascaceae. Within the identified families, only a small number of taxa are represented. Literature search revealed a large diversity of ergot alkaloid structures in different fungi of the phylum Ascomycota. However, ergot alkaloid accumulation was only observed in 15 of the sequenced species. Therefore, this study provides genetic basis for further study on ergot alkaloid production in the sequenced strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amici AM, Minghetti A, Scotti T, Spalla C, Tognoli L (1966) Production of ergotamine by a strain of Claviceps purpurea (Fr.) Tul. Experientia 22:415–416

    Article  CAS  PubMed  Google Scholar 

  • Antipova TV, Zhelifonova VP, baskunov BP, Ozerskaia SM, Ivanushkina NE, Kozlovskii AG (2011) New producers of biologically active compounds–fungal strains of the genus Penicillium isolated from permafrost. Appl Biochem Microbiol 47:288–292

    Article  CAS  Google Scholar 

  • Bacetty AA, Snook ME, Glenn AE, Noe JP, Hill N, Culbreath A, Timper P, Nagabhyru P, Bacon CW (2009) Toxicity of endophyte-infected tall fescue alkaloids and grass metabolites on Pratylenchus scribneri. Phytopathology 99:1336–1345

    Article  CAS  PubMed  Google Scholar 

  • Banks GT, Mantle PG, Szczyrbak CA (1974) Large-scale production of clavine alkaloids by Claviceps fusiformis. J Gen Microbiol 82(2):345–361

    Article  CAS  PubMed  Google Scholar 

  • Barrow KD, Quigley FR (1975) Ergot alkaloids III: the isolation of N-methyl-4-dimethylallyltryptophan from claviceps fusiformis. Tetrahedron Lett 16:4269–4270

    Article  Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    Article  CAS  PubMed  Google Scholar 

  • Cole RJ, Kirksey JW, Dorner JW, Wilson DM, Johnson J Jr, Bedell D, Springer JP, Chexal KK, Clardy J, Cox RH (1977) Mycotoxins produced by Aspergillus fumigatus isolated from silage. Ann Nutr Aliment 31:685–691

    CAS  PubMed  Google Scholar 

  • Fleetwood DJ, Scott B, Lane GA, Tanaka A, Johnson RD (2007) A complex ergovaline gene cluster in epichloe endophytes of grasses. Appl Environ Microbiol 73:2571–2579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flieger M, Wurst M, Shelby R (1997) Ergot alkaloids–sources, structures and analytical methods. Folia Microbiol (Praha) 42:3–30

    Article  CAS  Google Scholar 

  • Floss HG (1976) Biosynthesis of ergot alkaloids and related compounds. Tetrahedron 32:873–912

    Article  CAS  Google Scholar 

  • Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie XQ, Zhou G, Peng G, Luo Z, Huang W, Wang B, Fang W, Wang S, Zhong Y, Ma LJ, St Leger RJ, Zhao GP, Pei Y, Feng MG, Xia Y, Wang C (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. Plos Genet 7:e1001264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ge HM, Yu ZG, Zhang J, Wu JH, Tan RX (2009) Bioactive alkaloids from endophytic Aspergillus fumigatus. J Nat Prod 72:753–755

    Article  CAS  PubMed  Google Scholar 

  • Gerhards N, Neubauer L, Tudzynski P, Li S-M (2014) Biosynthetic pathways of ergot alkaloids. Toxins (Basel) 6:3281–3295

    Article  CAS  Google Scholar 

  • Goetz KE, Coyle CM, Cheng JZ, O’Connor SE, Panaccione DG (2011) Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Curr Genet 57:201–211

    Article  CAS  PubMed  Google Scholar 

  • Gröger D, Floss HG (1998) Biochemistry of ergot alkaloids—achievements and challenges. Alkaloids Chem Biol 50:171–218

    Google Scholar 

  • Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14:189–195

    Article  CAS  PubMed  Google Scholar 

  • Kozlovsky AG, Zhelifonova VP, Antipova TV (2005) The fungus Penicillium citrinum, isolated from permafrost sediments, as a producer of ergot alkaloids and new quinoline alkaloids quinocitrinines. Appl Biochem Microbiol 41:568–572

    Article  Google Scholar 

  • Kozlovsky AG, Zhelifonova VP, Antipova TV, Zelenkova NF (2011) Physiological and biochemical characteristics of the genus Penicillium fungi as producers of ergot alkaloids and quinocitrinins. Appl Biochem Microbiol 47:426–430

    Article  CAS  Google Scholar 

  • Lee MR (2009) The history of ergot of rye (Claviceps purpurea) II: 1900–1940. J R Coll Physicians Edinb 39:365–369

    Article  CAS  PubMed  Google Scholar 

  • Lorenz N, Olšovská J, Šulc M, Tudzynski P (2010) The alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes the chanoclavine-I-synthase, an FAD-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine-I. Appl Environ Microbiol 76:1822–1830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lovell BV, Marmura MJ (2010) New therapeutic developments in chronic migraine. Curr Opin Neurol 23:254–258

    Article  CAS  PubMed  Google Scholar 

  • Mai P, Li S-M (2013) Alkaloids derived from tryptophan: a focus on ergot alkaloids. In: Ramawat KG, Mérillon JM (eds) Natural products. Springer, Berlin Heidelberg, pp 683–714

    Chapter  Google Scholar 

  • Matuschek M, Wallwey C, Xie X, Li S-M (2011) New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org Biomol Chem 9:4328–4335

    Article  CAS  PubMed  Google Scholar 

  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, Garcia JL, Garcia MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jimenez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafton A, Latgèé JP, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O’Neil S, Paulsen I, Penalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, Rodriguez de Cordoba S, Rodriguez-Pena JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sanchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, Vazquez de Aldana CR, Weidman J, White O, Woodward J, Yu JH, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156

    Article  CAS  PubMed  Google Scholar 

  • O’Brien M, Nielsen KF, O’Kiely P, Forristal PD, Fuller HT, Frisvad JC (2006) Mycotoxins and other secondary metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland. J Agric Food Chem 54:9268–9276

    Article  PubMed  Google Scholar 

  • Ohmomo S, Sato T, Utagawa T, Abe M (1975) Isolation of festuclavine and 3 new indole alkaloids, roquefortine-A, roquefortine-B and roquefortine-C from cultures of Penicillium roqueforti. Agric Biol Chem 39:1333–1334

    Article  CAS  Google Scholar 

  • Porter JK, Bacon CW, Robbins JD (1979) Ergosine, ergosinine, and chanoclavine I from Epichloë typhina. J Agric Food Chem 27:595–598

    Article  CAS  PubMed  Google Scholar 

  • Rigbers O, Li S-M (2008) Ergot alkaloid biosynthesis in Aspergillus fumigatus: overproduction and biochemical characterisation of a 4-dimethylallyltryptophan N-methyltransferase. J Biol Chem 283:26859–26868

    Article  CAS  PubMed  Google Scholar 

  • Robertson CE, Black DF, Swanson JW (2010) Management of migraine headache in the emergency department. Semin Neurol 30:201–211

    Article  PubMed  Google Scholar 

  • Robinson SL, Panaccione DG (2012) Chemotypic and genotypic diversity in the ergot alkaloid pathway of Aspergillus fumigatus. Mycologia 104:804–812

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL (2008) Ergot alkaloid biosynthesis gene cluster of Epichloe festucae. unpublished

  • Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot alkaloids–biology and molecular biology. Alkaloids Chem Biol 63:45–86

    CAS  PubMed  Google Scholar 

  • Schardl CL, Florea S, Pan J, Nagabhyru P, Bec S, Calie PJ (2013) The epichloae: alkaloid diversity and roles in symbiosis with grasses. Curr Opin Plant Biol 16:480–488

    Article  CAS  PubMed  Google Scholar 

  • Schumann B, Erge D, Maier W, Gröger D (1982) A new strain of Claviceps purpurea accumulating tetracyclic clavine alkaloids. Planta Med 45:11–14

    Article  CAS  PubMed  Google Scholar 

  • Setnikar I, Schmid K, Rovati LC, Vens-Cappell B, Mazur D, Kozak I (2001) Bioavailability and pharmacokinetic profile of dihydroergotoxine from a tablet and from an oral solution formulation. Arzneimittelforschung 51:2–6

    CAS  PubMed  Google Scholar 

  • Spilsbury JF, Wilkinson S (1961) Isolation of festuclavine and two new clavine alkaloids from Aspergillus fumigatus. J Chem Soc 2085–2091

  • Stoll A (1955) Introductory remarks on ergotamine. Int Arch Allergy Appl Immunol 7:197–204

    Article  CAS  PubMed  Google Scholar 

  • Tsai HF, Wang H, Gebler JC, Poulter CD, Schardl CL (1995) The Claviceps purpurea gene encoding dimethylallyltryptophan synthase, the committed step for ergot alkaloid biosynthesis. Biochem Biophys Res Commun 216:119–125

    Article  CAS  PubMed  Google Scholar 

  • Tscherter H, Hauth H (1974) Three new ergot alkaloids from saprophytic culture of Claviceps paspali Stevens et Hall. Helv Chim Acta 57:113–121

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski P, Holter K, Correia T, Arntz C, Grammel N, Keller U (1999) Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet 261:133–141

    Article  CAS  PubMed  Google Scholar 

  • Unsöld IA (2006) Molecular biological and biochemical investigations on the biosynthesis of fumigaclavines in Aspergillus fumigatus AF 293/B 5233 and Penicillium commune NRRL2033. Dissertation Universität Tübingen

  • Unsöld IA, Li S-M (2005) Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology 151:1499–1505

    Article  PubMed  Google Scholar 

  • Unsöld IA, Li S-M (2006) Reverse prenyltransferase in the biosynthesis of fumigaclavine C in Aspergillus fumigatus: gene expression, purification and characterization of fumigaclavine C synthase FgaPT1. ChemBioChem 7:158–164

    Article  PubMed  Google Scholar 

  • van Dongen PW, de Groot AN (1995) History of ergot alkaloids from ergotism to ergometrine. Eur J Obstet Gynecol Reprod Biol 60:109–116

    Article  PubMed  Google Scholar 

  • Vinokurova NG, Ozerskaya SM, Baskunov BP, Arinbasarov MU (2003) The Penicillium commune Thom and Penicillium clavigerum demelius fungi producing fumigaclavines A and B. Microbiology (Moscow) 72:149–151

    Article  CAS  Google Scholar 

  • Wagener RE, Davis ND, Diener UL (1980) Penitrem A and roquefortine production by Penicillium commune. Appl Environ Microbiol 39:882–887

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wallwey C, Li S-M (2011) Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep 28:496–510

    Article  CAS  PubMed  Google Scholar 

  • Wallwey C, Matuschek M, Li S-M (2010a) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch Microbiol 192:127–134

    Article  CAS  PubMed  Google Scholar 

  • Wallwey C, Matuschek M, Xie X-L, Li S-M (2010b) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I aldehyde to festuclavine by the festuclavine synthase FgaFS in the presence of the old yellow enzyme FgaOx3. Org Biomol Chem 8:3500–3508

    Article  CAS  PubMed  Google Scholar 

  • Wallwey C, Heddergott C, Xie X, Brakhage AA, Li S-M (2012) Genome mining reveals the presence of a conserved gene cluster for the biosynthesis of ergot alkaloid precursors in the fungal family Arthrodermataceae. Microbiology 158:1634–1644

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Song YC, Guo Y, Mei YN, Tan RX (2014) Fumigaclavines D-H, new ergot alkaloids from endophytic Aspergillus fumigatus. Planta Med 80:1131–1137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grant from the Deutsche Forschungsgemeinschaft (Li844/3-1 to S.-M. Li). We would like to thank Christopher L. Schardl for his helpful advice on the phylogenetic analysis and his comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ming Li.

Additional information

Communicated by Olaf Kniemeyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 17223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerhards, N., Matuschek, M., Wallwey, C. et al. Genome mining of ascomycetous fungi reveals their genetic potential for ergot alkaloid production. Arch Microbiol 197, 701–713 (2015). https://doi.org/10.1007/s00203-015-1105-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1105-4

Keywords

Navigation