Skip to main content

Alkaloids Derived from Tryptophan: A Focus on Ergot Alkaloids

  • Reference work entry
  • First Online:
Natural Products

Abstract

Ergot alkaloids are secondary metabolites with significantly toxicological and pharmacological relevance and have been identified in different fungi of Ascomycota and several families of higher plants. Lysergic acid amides or peptides produced by the fungus Claviceps purpurea of the family Clavicipitaceae, e.g., ergometrine, ergotamine, or ergotoxine, and their semisynthetic derivatives are widely used in modern medicine for treatment of diverse diseases. Large-scale productions of ergot alkaloids for pharmaceutical applications have been achieved by biotechnological processes including field cultivation of Claviceps purpurea on rye or in submerged cultures. Some members of the fungal family of Trichocomaceae such as Aspergillus fumigatus and Penicillium commune produce clavine-type ergot alkaloids. These substances consist merely of the ergoline ring system as a common structure of most ergot alkaloids and lack an amide or peptidyl moiety in comparison to ergoamides or ergopeptines. Diverse analytical methods were developed for detection and determination of ergot alkaloids as mycotoxins in foods, cereals, and livestock feeds. Significant progress has also been achieved on the molecular biological and biochemical investigations of ergot alkaloid biosynthesis in the last years. The reaction steps from prenylation of tryptophan to formation of the ergoline ring system have been studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-DMA-l-abrine:

N-methyl-4-dimethylallyltryptophan

4-l-DMAT:

4-dimethylallyltryptophan

5-HT:

5-hydroxytryptamine

A. fumigatus :

Aspergillus fumigatus

acetyl-CoA:

Acetyl coenzyme A

C. purpurea :

Claviceps purpurea

C. fusiformis :

Claviceps fusiformis

DMAPP:

Dimethylallyl diphosphate

DMATS:

Dimethylallyl tryptophan synthase

E. coli :

Escherichia coli

EA:

Ergot alkaloid

ELISA:

Enzyme-linked immunosorbent assay

GSH:

Reduced glutathione

HPLC:

High performance liquid chromatography

LSD:

Lysergic acid diethylamide

N. lolii :

Neotyphodium lolii

NADH:

Nicotinamide adenine mononucleotide-phosphate

NFκB:

Nuclear factor κB

NRPS:

Nonribosomal peptide synthetase

P. commune :

Penicillium commune

SAM:

S-adenosyl methionine

TLC:

Thin-layer chromatography

TLR 4:

Toll-like receptor 4

References

  1. Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot alkaloids–biology and molecular biology. The Alkaloids. Chem Biol 63:45–86

    CAS  Google Scholar 

  2. Flieger M, Wurst M, Shelby R (1997) Ergot alkaloids–sources, structures and analytical methods. Folia Microbiol (Praha) 42:3–30

    Article  CAS  Google Scholar 

  3. Gröger D, Floss HG (1998) Biochemistry of ergot alkaloids – achievements and challenges. Alkaloids Chem Biol 50:171–218

    Article  Google Scholar 

  4. Haarmann T, Rolke Y, Giesbert S, Tudzynski P (2009) Ergot: from witchcraft to biotechnology. Mol Plant Pathol 10:563–577

    Article  CAS  Google Scholar 

  5. Wallwey C, Li S-M (2011) Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep 28:496–510

    Article  CAS  Google Scholar 

  6. Leistner E, Steiner U (2009) Fungal origin of ergoline alkaloids present in dicotyledonous plants (Convolvulaceae). In: The mycota XV: physiology and genetics, 1st edn. Springer, Berlin/Heidelberg

    Google Scholar 

  7. Schardl CL, Scott B, Florea S, Zhang D (2009) Epichloë endophytes: clavicipitaceous symbionts of grasses. In: The mycota V: plant relationships, 2nd edn. Springer, Berlin/Heidelberg

    Google Scholar 

  8. Lee MR (2009) The history of ergot of rye (Claviceps purpurea) I: from antiquity to 1900. J R Coll Physicians Edinb 39:179–184

    Article  CAS  Google Scholar 

  9. Strickland JR, Looper ML, Matthews JC, Rosenkrans CF Jr, Flythe MD, Brown KR (2011) Board-invited review: St. Anthony’s fire in livestock: causes, mechanisms, and potential solutions. J Anim Sci 89:1603–1626

    Article  CAS  Google Scholar 

  10. de Groot AN, van Dongen PW, Vree TB, Hekster YA, van Roosmalen J (1998) Ergot alkaloids current status and review of clinical pharmacology and therapeutic use compared with other oxytocics in obstetrics and gynaecology. Drugs 56:523–535

    Article  Google Scholar 

  11. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  Google Scholar 

  12. Panaccione DG, Johnson RD, Wang J, Young CA, Damrongkool P, Scott B, Schardl CL (2001) Elimination of ergovaline from a grass-Neotyphodium endophyte symbiosis by genetic modification of the endophyte. Proc Natl Acad Sci USA 98:12820–12825

    Article  CAS  Google Scholar 

  13. Floss HG (1976) Biosynthesis of ergot alkaloids and related compounds. Tetrahedron 32:873–912

    Article  CAS  Google Scholar 

  14. Floss HG, Tscheng-Lin M, Chang C, Naidoo B, Balir GE, Abou-Chaar CI, Cassady JM (1974) Biosynthesis of ergot alkaloids. Studies on the mechanism of the conversion of chanoclavine-I into tetracyclic ergolines. J Am Chem Soc 96:1898–1909

    Article  CAS  Google Scholar 

  15. Williams RM, Stocking EM, Sanz-Cervera JF (2000) Biosynthesis of prenylated alkaloids derived from tryptophan. Topics Curr Chem 209:97–173

    Article  CAS  Google Scholar 

  16. Tudzynski P, Holter K, Correia T, Arntz C, Grammel N, Keller U (1999) Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet 261:133–141

    Article  CAS  Google Scholar 

  17. Tsai HF, Wang H, Gebler JC, Poulter CD, Schardl CL (1995) The Claviceps purpurea gene encoding dimethylallyltryptophan synthase, the committed step for ergot alkaloid biosynthesis. Biochem Biophys Res Commun 216:119–125

    Article  CAS  Google Scholar 

  18. Unsöld IA, Li S-M (2005) Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology 151:1499–1505

    Article  CAS  Google Scholar 

  19. Coyle CM, Kenaley SC, Rittenour WR, Panaccione DG (2007) Association of ergot alkaloids with conidiation in Aspergillus fumigatus. Mycologia 99:804–811

    Article  CAS  Google Scholar 

  20. Frisvad JC, Rank C, Nielsen KF, Larsen TO (2009) Metabolomics of Aspergillus fumigatus. Med Mycol 47:S53–S71

    Article  CAS  Google Scholar 

  21. Vinokurova NG, Boichenko LV, Arinbasarov MU (2003) Production of alkaloids by fungi of the genus Penicillium grown on wheat grain. Appl Biochem Microbiol 39:403–406

    Article  CAS  Google Scholar 

  22. Matuschek M, Wallwey C, Wollinsky B, Xie X, Li S-M (2012) In vitro conversion of chanoclavine-I aldehyde to the stereoisomers festuclavine and pyroclavine controlled by the second reduction step. RSC Adv 2:3662–3669

    Article  CAS  Google Scholar 

  23. Ohmomo S, Kaneko M, Atthasampunna P (1989) Production of fumigaclavine B by a thermophilic strain of Aspergillus fumigatus. MIRCEN J Appl Microbiol Biotechn 5:5–13

    Article  CAS  Google Scholar 

  24. Janardhanan KK, Sattar A, Husain A (1984) Production of fumigaclavine A by Aspergillus tamarii Kita. Can J Microbiol 30:247–250

    Article  CAS  Google Scholar 

  25. Cole RJ, Kirksey JW, Dorner JW, Wilson DM, Johnson JC Jr, Johnson AN, Bedell DM, Springer JP, Chexal KK, Clardy JC, Others (1977) Mycotoxins produced by Aspergillus fumigatus species isolated from molded silage. J Agr Food Chem 25:826–830

    Google Scholar 

  26. Wallwey C, Matuschek M, Xie X-L, Li S-M (2010) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I aldehyde to festuclavine by the festuclavine synthase FgaFS in the presence of the old yellow enzyme FgaOx3. Org Biomol Chem 8:3500–3508

    Article  CAS  Google Scholar 

  27. Kawai K, Nozawa K, Yamaguchi T, Nakajima S, Udagawa S (1992) Two chemotypes of Penicillium crustosum based on the analysis of indolic components. Mycotoxins 36:19–24

    CAS  Google Scholar 

  28. Cole RJ, Dorner JW, Cox RH, Raymond LW (1983) Two classes of alkaloid mycotoxins produced by Penicillium crustosum Thom isolated from contaminated beer. J Agric Food Chem 31:655–657

    Article  CAS  Google Scholar 

  29. Vinokurova NG, Reshetilova TA, Adanin VM, Kozlovskii AG (1991) Alkaloid composition of Penicillium palitans and Penicillium oxalicum. Appl Biochem Microbiol 27:644–648

    Google Scholar 

  30. Boichenko LV, Zelenkova NF, Arinbasarov MU, Reshetilova TA (2003) Optimization of conditions for storage and cultivation of the fungus Claviceps sp., a producer of the ergot alkaloid agroclavine. Appl Biochem Microbiol 39:294–299

    Article  CAS  Google Scholar 

  31. Banks GT, Mantle PG, Szczyrbak CA (1974) Large-scale production of clavine alkaloids by Claviceps fusiformis. J Gen Microbiol 82(Pt. 2):345–361

    CAS  Google Scholar 

  32. Pažoutová S, Flieger M, Sajdl P, Rehacek Z, Taisinger J, Bass A (1981) The relationship between intensity of oxidative metabolism and predominance of agroclavine or elymoclavine in submerged Claviceps purpurea cultures. J Nat Prod 44:225–235

    Article  Google Scholar 

  33. Schumann B, Erge D, Maier W, Groeger D (1982) A new strain of Claviceps purpurea accumulating tetracyclic clavine alkaloids. Planta Med 45:11–14

    Article  CAS  Google Scholar 

  34. Kren V, Pazoutova S, Sedmera P, Rylko V, Rehacek Z (1986) High-production mutant Claviceps purpurea 59 accumulating secoclavines. FEMS Microbiol Lett 37:31–34

    Article  CAS  Google Scholar 

  35. Lorenz N, Haarmann T, Pazoutova S, Jung M, Tudzynski P (2009) The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. Phytochemistry 70:1822–1932

    Article  CAS  Google Scholar 

  36. Correia T, Grammel N, Ortel I, Keller U, Tudzynski P (2003) Molecular cloning and analysis of the ergopeptine assembly system in the ergot fungus Claviceps purpurea. Chem Biol 10:1281–1292

    Article  CAS  Google Scholar 

  37. Haarmann T, Lorenz N, Tudzynski P (2008) Use of a nonhomologous end joining deficient strain (Deltaku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal Genet Biol 45:35–44

    Article  CAS  Google Scholar 

  38. Ortel I, Keller U (2009) Combinatorial assembly of simple and complex D-lysergic acid alkaloid peptide classes in the ergot fungus Claviceps purpurea. J Biol Chem 284:6650–6660

    Article  CAS  Google Scholar 

  39. Kucht S, Gross J, Hussein Y, Grothe T, Keller U, Basar S, Konig WA, Steiner U, Leistner E (2004) Elimination of ergoline alkaloids following treatment of Ipomoea asarifolia (Convolvulaceae) with fungicides. Planta 219:619–625

    Article  CAS  Google Scholar 

  40. Markert A, Steffan N, Ploss K, Hellwig S, Steiner U, Drewke C, Li S-M, Boland W, Leistner E (2008) Biosynthesis and accumulation of ergoline alkaloids in a mutualistic association between Ipomoea asarifolia (Convolvulaceae) and a Clavicipitalean fungus. Plant Physiol 147:296–305

    Article  CAS  Google Scholar 

  41. Ahimsa-Müller MA, Markert A, Hellwig S, Knoop V, Steiner U, Drewke C, Leistner E (2007) Clavicipitaceous fungi associated with ergoline alkaloid-containing Convolvulaceae. J Nat Prod 70:1955–1960

    Article  CAS  Google Scholar 

  42. Steiner U, Leibner S, Schardl CL, Leuchtmann A, Leistner E (2011) Periglandula, a new fungal genus within the Clavicipitaceae and its association with Convolvulaceae. Mycologia 103:1133–1145

    Article  Google Scholar 

  43. Schardl CL (2001) Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genet Biol 33:69–82

    Article  CAS  Google Scholar 

  44. Bacetty AA, Snook ME, Glenn AE, Noe JP, Hill N, Culbreath A, Timper P, Nagabhyru P, Bacon CW (2009) Toxicity of endophyte-infected tall fescue alkaloids and grass metabolites on Pratylenchus scribneri. Phytopathology 99:1336–1345

    Article  CAS  Google Scholar 

  45. Fleetwood DJ, Scott B, Lane GA, Tanaka A, Johnson RD (2007) A complex ergovaline gene cluster in epichloe endophytes of grasses. Appl Environ Microbiol 73:2571–2579

    Article  CAS  Google Scholar 

  46. Faeth SH, Hayes CJ, Gardner DR (2010) Asexual endophytes in a native grass: tradeoffs in mortality, growth, reproduction and alkaloid production. Plant Micro Interac. doi:10.1007/s00248-010-9643-4

    Google Scholar 

  47. Dierkes W, Lohmeyer M, Rehm HJ (1993) Long-term production of ergot peptides by immobilized Claviceps purpurea in semicontinuous and continuous culture. Appl Environ Microbiol 59:2029–2033

    CAS  Google Scholar 

  48. Amici AM, Minghetti A, Scotti T, Spalla C, Tognoli L (1969) Production of peptide ergot alkaloids in submerged culture by three isolates of Claviceps purpurea. Appl Microbiol 18:464–468

    CAS  Google Scholar 

  49. Amici AM, Minghetti A, Scotti T, Spalla C, Tognoli L (1967) Ergotamine production in submerged culture and physiology of Claviceps purpurea. Appl Microbiol 15:597–602

    CAS  Google Scholar 

  50. Wallwey C, Matuschek M, Li S-M (2010) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch Microbiol 192:127–134

    Article  CAS  Google Scholar 

  51. Müller C (2009) Analytik und Vorkommen von Mutterkornalkaloiden in ausgewählten Lebensmitteln. Dissertation Technische Universität Berlin

    Google Scholar 

  52. Rottinghaus GE, Schultz LM, Ross PF, Hill NS (1993) An HPLC method for the detection of ergot in ground and pelleted feeds. J Vet Diagn Invest 5:242–247

    Article  CAS  Google Scholar 

  53. Scott PM, Lawrence GA (1980) Analysis of ergot alkaloids in flour. J Agric Food Chem 28:1258–1261

    Article  CAS  Google Scholar 

  54. Ware GM, Carman AS, Francis OJ, Kuan SS (1986) Liquid-chromatographic determination of ergot alkaloids in wheat. J AOAC Int 69:697–699

    CAS  Google Scholar 

  55. Ware GM, Price G, Carter L, Eitenmiller RR (2000) Liquid chromatographic preparative method for isolating ergot alkaloids, using a particle-loaded membrane extracting disk. J AOAC Int 83:1395–1399

    CAS  Google Scholar 

  56. Curtui M, Soran ML (2007) Use of di(n-butyl) and di(iso-butyl)dithiophosphoric acids as complexing agents in the TLC separation of some d and f transition metal ions. JPC 20:153–158

    CAS  Google Scholar 

  57. Spiering MJ, Davies E, Tapper BA, Schmid J, Lane GA (2002) Simplified extraction of ergovaline and peramine for analysis of tissue distribution in endophyte-infected grass tillers. J Agric Food Chem 50:5856–5862

    Article  CAS  Google Scholar 

  58. Fajardo JE, Dexter JE, Roscoe MM, Nowicki TW (1995) Retention of ergot alkaloids in wheat during processing. Cereal Chem 72:291–298

    CAS  Google Scholar 

  59. Young JC (1981) Variability in the content and composition of alkaloids found in Canadian ergot 2. Wheat. J Environ Sci Health Part B Pestic Food Contam Agric Wastes 16:381–393

    Article  CAS  Google Scholar 

  60. Robbers JE, Krupinski VM, Sheriat HS, Huber DM (1975) Methode for detection of ergot contamination in ground triticale grain. Phytopathology 65:455–457

    Article  CAS  Google Scholar 

  61. Sallam LAR, Naim N, Elrefai AH (1977) Thin-layer chromatography of some ergot alkaloids. Fresen Z Anal Chem 284:47–48

    Article  CAS  Google Scholar 

  62. Klug C, Baltes W, Kronert W, Weber R (1988) Method for the determination of ergot alkaloids in food. Z Lebensm Unters For 186:108–113

    Article  CAS  Google Scholar 

  63. Scott PM (2007) Analysis of ergot alkaloids - a review. Mycotoxin Res 23:113–121

    Article  CAS  Google Scholar 

  64. Michelon LE, Kelleher WJ (1963) Spectrophotometric determination of ergot alkaloids - a modified procedure employing paradimethylaminobenzaldehyde. Lloydia 26:192–201

    CAS  Google Scholar 

  65. Puech A, Duru C, Jacob M (1974) Identification d’alcaloides idoliques par chromatographie an couches minces. Utilisation d'un révélateur à l’acide glyoxylique. J Pharm Belg 29:126–132

    CAS  Google Scholar 

  66. Rucker G, Taha A (1977) Use of pi-acceptors for detection of alkaloids on thin-layers. J Chromatogr 132:165–167

    Article  CAS  Google Scholar 

  67. Shelby RA, Kelley VC (1990) An immunoassay for ergotamine and related alkaloids. J Agric Food Chem 38:1130–1134

    Article  CAS  Google Scholar 

  68. Shelby RA, Kelley VC (1992) Detection of ergot alkaloids from Claviceps species in agricultural products by competitive ELISA using a monoclonal-antibody. J Agric Food Chem 40:1090–1092

    Article  CAS  Google Scholar 

  69. Molloy JB, Moore CJ, Bruyeres AG, Murray SA, Blaney BJ (2003) Determination of dihydroergosine in sorghum ergot using an immunoassay. J Agric Food Chem 51:3916–3919

    Article  CAS  Google Scholar 

  70. Schnitzius JM, Hill NS, Thompson CS, Craig AM (2001) Semiquantitative determination of ergot alkaloids in seed, straw, and digesta samples using a competitive enzyme-linked immunosorbent assay. J Vet Diagn Invest 13:230–237

    Article  CAS  Google Scholar 

  71. Ruhland M, Tischler J (2008) Determination of ergot alkaloids in feed by HPLC. Mycotoxin Res 24:73–79

    Article  CAS  Google Scholar 

  72. Krska R, Crews C (2008) Significance, chemistry and determination of ergot alkaloids: a review. Food Addit Contam 25:722–731

    Article  CAS  Google Scholar 

  73. Reinhard H, Rupp H, Zoller O (2008) Ergot alkaloids: quantitation and recognition challenges. Mycotoxin Res 24:7–13

    Article  CAS  Google Scholar 

  74. Panaccione DG (2005) Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiol Lett 251:9–17

    Article  CAS  Google Scholar 

  75. Katzug BG (2009) Histamine, serotonin and the ergot alkaloids. In: Katzung BG, Masters SB, Trevor AJ (eds) Basic and clinical pharmacology, 11th edn. McGraw-Hill Medical, New York/London

    Google Scholar 

  76. Sinz A (2008) Die bedeutung der mutterkorn-alkaloide als arzneistoffe. Pharm Unserer Zeit 37:306–309

    Article  CAS  Google Scholar 

  77. Tudzynski P, Correia T, Keller U (2001) Biotechnology and genetics of ergot alkaloids. Appl Microbiol Biotechnol 57:593–605

    Article  CAS  Google Scholar 

  78. Ma HY, Song YC, Mao YY, Jiang JH, Tan RX, Luo L (2006) Endophytic fungal metabolite fumigaclavine C causes relaxation of isolated rat aortic rings. Planta Med 72:387–392

    Article  CAS  Google Scholar 

  79. Zhao Y, Liu J, Wang J, Wang L, Yin H, Tan R, Xu Q (2004) Fumigaclavine C improves concanavalin A-induced liver injury in mice mainly via inhibiting TNF-alpha production and lymphocyte adhesion to extracellular matrices. J Pharm Pharmacol 56:775–782

    Article  CAS  Google Scholar 

  80. Wu X-F, Fei M-J, Shu R-G, Tan R-X, Xu Q (2005) Fumigaclavine C, an fungal metabolite, improves experimental colitis in mice via downregulating Th1 cytokine production and matrix metalloproteinase activity. Int Immunopharmacol 5:1543–1553

    Article  CAS  Google Scholar 

  81. Du RH, Li EG, Cao Y, Song YC, Tan RX (2011) Fumigaclavine C inhibits tumor necrosis factor alpha production via suppression of toll-like receptor 4 and nuclear factor kappaB activation in macrophages. Life Sci 89:235–240

    Article  CAS  Google Scholar 

  82. Pertz H (1996) Naturally occurring clavines: antagonism/partial agonism at 5-HT2A receptors and antagonism at alpha 1-adrenoceptors in blood vessels. Planta Med 62:387–392

    Article  CAS  Google Scholar 

  83. Ge HM, Yu ZG, Zhang J, Wu JH, Tan RX (2009) Bioactive alkaloids from endophytic Aspergillus fumigatus. J Nat Prod 72:753–755

    Article  CAS  Google Scholar 

  84. Schiff PL (2006) Ergot and its alkaloids. Am J Pharma Educ 70:1–10

    Article  Google Scholar 

  85. Lee MR (2010) The history of ergot of rye (Claviceps purpurea) III: 1940-80. J R Coll Physicians Edinb 40:77–80

    Article  CAS  Google Scholar 

  86. Hofmann A (1980) LSD - My problem child. McGraw-Hill, New York

    Google Scholar 

  87. Robertson CE, Black DF, Swanson JW (2010) Management of migraine headache in the emergency department. Semin Neurol 30:201–211

    Article  Google Scholar 

  88. Halker R, Vargas B, Dodick DW (2010) Cluster headache: diagnosis and treatment. Semin Neurol 30:175–185

    Article  Google Scholar 

  89. Saper JR, Silberstein S (2006) Pharmacology of dihydroergotamine and evidence for efficacy and safety in migraine. Headache 46(Suppl 4):S171–S181

    Article  Google Scholar 

  90. Lovell BV, Marmura MJ (2010) New therapeutic developments in chronic migraine. Curr Opin Neurol 23:254–258

    Article  CAS  Google Scholar 

  91. Jourdan G, Verwaerde P, Pathak A, Tran MA, Montastruc JL, Senard JM (2007) In vivo pharmacodynamic interactions between two drugs used in orthostatic hypotension–midodrine and dihydroergotamine. Fundam Clin Pharmacol 21:45–53

    Article  CAS  Google Scholar 

  92. Setnikar I, Schmid K, Rovati LC, Vens-Cappell B, Mazur D, Kozak I (2001) Bioavailability and pharmacokinetic profile of dihydroergotoxine from a tablet and from an oral solution formulation. Arzneimittelforschung 51:2–6

    CAS  Google Scholar 

  93. Bonuccelli U, Del Dotto P, Rascol O (2009) Role of dopamine receptor agonists in the treatment of early Parkinson´s disease. Parkins Rel Disord 15S:S44–S53

    Article  Google Scholar 

  94. Martinez-Martin P, Kurtis MM (2009) Systematic review of the effect of dopamine receptor agonists on patient health-related quality of life. Parkinsonism Relat Disord 15(Suppl 4):S58–S64

    Article  Google Scholar 

  95. Curran MP, Perry CM (2004) Cabergoline: a review of its use in the treatment of Parkinson’s disease. Drugs 64:2125–2141

    Article  CAS  Google Scholar 

  96. Cassady JM, Li GS, Spitzner EB, Floss HG, Clemens JA (1974) Ergot alkaloids. Ergolines and related compounds as inhibitors of prolactin release. J Med Chem 17:300–307

    Article  CAS  Google Scholar 

  97. Chanson P, Borson-Chazot F, Chabre O, Estour B (2007) Drug treatment of hyperprolactinemia. Ann Endocrinol (Paris) 68:113–117

    Article  CAS  Google Scholar 

  98. Motazedian S, Babakhani L, Fereshtehnejad SM, Mojthahedi K (2010) A comparison of bromocriptine & cabergoline on fertility outcome of hyperprolactinemic infertile women undergoing intrauterine insemination. Indian J Med Res 131:670–674

    CAS  Google Scholar 

  99. Colao A, Di SA, Guerra E, De LM, Mentone A, Lombardi G (2006) Drug insight: cabergoline and bromocriptine in the treatment of hyperprolactinemia in men and women. Nat Clin Pract Endocrinol Metab 2:200–210

    Article  CAS  Google Scholar 

  100. Mothes K, Weygand F, Groger D, Grisebach H (1958) Untersuchungen zur biosynthese der mutterkornalkaloide. Z Naturforsch Pt B 13:41–44

    Google Scholar 

  101. Gröger D, Mothes K, Simon H, Floss HG, Weygand F (1960) Über den einbau von mevalonsäure in das ergolinsystem der clavin-alkaloide. Z Naturforsch Pt B 15:141–143

    Google Scholar 

  102. Gröger D, Wendt HJ, Mothes K, Weygand F (1959) Untersuchungen zur biosynthese der mutterkornalkaloide. Z Naturforsch Pt B 14:355–358

    Google Scholar 

  103. Heinstein PF, Lee SI, Floss HG (1971) Isolation of dimethylallylpyrophosphate: tryptophan dimethylallyl transferase from the ergot fungus (Claviceps spec.). Biochem Biophys Res Commun 44:1244–1251

    Article  CAS  Google Scholar 

  104. Gebler JC, Poulter CD (1992) Purification and characterization of dimethylallyl tryptophan synthase from Claviceps purpurea. Arch Biochem Biophys 296:308–313

    Article  CAS  Google Scholar 

  105. Wang J, Machado C, Panaccione DG, Tsai HF, Schardl CL (2004) The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genet Biol 41:189–198

    Article  CAS  Google Scholar 

  106. Haarmann T, Machado C, Lübbe Y, Correia T, Schardl CL, Panaccione DG, Tudzynski P (2005) The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution. Phytochemistry 66:1312–1320

    Article  CAS  Google Scholar 

  107. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Others (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438: 1151–1156

    Google Scholar 

  108. Unsöld IA (2006) Molecular biological and biochemical investigations on the biosynthesis of fumigaclavines in Aspergillus fumigatus AF 293/B 5233 and Penicillium commune NRRL2033. Dissertation Universität Tübingen

    Google Scholar 

  109. Li S-M, Unsöld IA (2006) Post genome research on the biosynthesis of ergot alkaloids. Planta Med 72:1117–1120

    Article  CAS  Google Scholar 

  110. Unsöld IA, Li S-M (2006) Reverse prenyltransferase in the biosynthesis of fumigaclavine C in Aspergillus fumigatus: gene expression, purification and characterization of fumigaclavine C synthase FgaPT1. Chembiochem 7:158–164

    Article  CAS  Google Scholar 

  111. Goetz KE, Coyle CM, Cheng JZ, O’Connor SE, Panaccione DG (2011) Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Curr Genet 57:201–211

    Article  CAS  Google Scholar 

  112. Coyle CM, Cheng JZ, O’Connor SE, Panaccione DG (2010) An old yellow enzyme gene that controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways. Appl Environ Microbiol 76:3898–3903

    Article  CAS  Google Scholar 

  113. Coyle CM, Panaccione DG (2005) An ergot alkaloid biosynthesis gene and clustered hypothetical genes from Aspergillus fumigatus. Appl Environ Microbiol 71:3112–3118

    Article  CAS  Google Scholar 

  114. Lorenz N, Olšovská J, Šulc M, Tudzynski P (2010) The alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes the chanoclavine-I-synthase, an FAD-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine-I. Appl Environ Microbiol 76:1822–1830

    Article  CAS  Google Scholar 

  115. Haarmann T, Ortel I, Tudzynski P, Keller U (2006) Identification of the cytochrome P450 monooxygenase that bridges the clavine and ergoline alkaloid pathways. Chembiochem 7:645–652

    Article  CAS  Google Scholar 

  116. Matuschek M, Wallwey C, Xie X, Li S-M (2011) New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org Biomol Chem 9:4328–4335

    Article  CAS  Google Scholar 

  117. Rigbers O, Li S-M (2008) Ergot alkaloid biosynthesis in Aspergillus fumigatus: overproduction and biochemical characterisation of a 4-dimethylallyltryptophan N-methyltransferase. J Biol Chem 283:26859–26868

    Article  CAS  Google Scholar 

  118. Cheng JZ, Coyle CM, Panaccione DG, O’Connor SE (2010) A role for old yellow enzyme in ergot alkaloid biosynthesis. J Am Chem Soc 132:1776–1777

    Article  CAS  Google Scholar 

  119. Cheng JZ, Coyle CM, Panaccione DG, O’Connor SE (2010) Controlling a structural branch point in ergot alkaloid biosynthesis. J Am Chem Soc 132:12835–12837

    Article  CAS  Google Scholar 

  120. Hassam SB, Floss HG (1981) Biosynthesis of ergot alkaloids. Incorporation of (17R)-(17-3H)- and (17S)-(17-3H) chanoclavine-I into elymoclyvine by Claviceps. J Nat Prod 44:756–758

    Article  CAS  Google Scholar 

  121. Xie X, Wallwey C, Matuschek M, Steinbach K, Li S-M (2011) Formyl migration product of chanoclavine-I aldehyde in the presence of the old yellow enzyme FgaOx3 from Aspergillus fumigatus: a NMR structure elucidation. Magn Reson Chem 49:678–681

    Article  CAS  Google Scholar 

  122. Liu X, Wang L, Steffan N, Yin W-B, Li S-M (2009) Ergot alkaloid biosynthesis in Aspergillus fumigatus: FgaAT catalyses the acetylation of fumigaclavine B. Chembiochem 10:2325–2328

    Article  CAS  Google Scholar 

  123. Lorenz N, Wilson EV, Machado C, Schardl CL, Tudzynski P (2007) Comparison of ergot alkaloid biosynthesis gene clusters in Claviceps species indicates loss of late pathway steps in evolution of C. fusiformis. Appl Environ Microbiol 73:7185–7191

    Article  CAS  Google Scholar 

  124. Matuschek M (2012) Molecular biological and biochemical investigations of the biosynthesis of mycotoxines in Ascomycetes. Dissertation Universität Marburg

    Google Scholar 

  125. Taber WA (1985) Biology of Claviceps. In: Demain AL, Solomon NA (eds) Biology of industrial microorganism. The Benjamin Cummings, San Francisco

    Google Scholar 

  126. Parbery DG (1996) Trophism and the ecology of fungi associated with plants. Biol Rev Camb Philos Soc 71:473–527

    Article  Google Scholar 

  127. Swan DJ, Mantle PG (1991) Parasitic interactions between Claviceps purpurea strains in wheat and an acute necrotic host response. Mycol Res 95:807–810

    Article  Google Scholar 

  128. Tenberge KB (1999) Biology and life strategy of the ergot fungi. In: Kren V, Cvak L (eds) Ergot: the genus Claviceps. Harwood Academic, Amsterdam

    Google Scholar 

  129. Tulasne L-R (1853) Mémoire sur l’ergot des glumacées. Ann Sci Natl 20:5–56

    Google Scholar 

  130. Tudzynski P, Scheffer J (2004) Claviceps purpurea: molecular aspects of a unique pathogenic lifestyle. Molec Plant Pathol 5:377–388

    Article  CAS  Google Scholar 

  131. Kirchhoff H (1929) Beiträge zur Biologie und Physiologie des Mutterkornpilzes. Centralblat Bakteriol Parasitenk Abt 2

    Google Scholar 

  132. Németh E (1999) Parasitic production of ergot alkaloids. In: Kren V, Cvak L (eds) Ergot: the genus Claviceps. Harwood Academic, Amsterdam

    Google Scholar 

  133. Geiger HH, Bausback GA (1979) Suitability of male-sterile rye for parasitic ergot production. Z Pflanzenzüchtg 83:163–175

    Google Scholar 

  134. Hulvova H, Galuszka P, Frebortova J, Frebort I (2012) Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnol Adv (in press)

    Google Scholar 

  135. Malinka Z (1999) Saprophytic cultivation of Claviceps. In: Kren V, Cvak L (eds) Ergot: the genus Claviceps. Harwood Academic, Amsterdam

    Google Scholar 

  136. Rucman R (1976) Lysergic acids. 2. isolation and separation of lysergic acids. J Chromatogr 121:353–360

    Article  CAS  Google Scholar 

  137. Kren V (1999) Physiological regulation of ergot alkaloid production and special cultivation techniques. In: Kren V, Cvak L (eds) Ergot: the genus Claviceps. Harwood Academic, Amsterdam

    Google Scholar 

  138. Spalla C (1973) Genetic problems of production of ergot alkaloids in saprophytic and parasitic conditions. In: Vanek Z, Rehacek Z, Cudlin J (eds) Genetics of industrial microoragnisms. Elsevier, Amsterdam

    Google Scholar 

  139. Kobel H, Sanglier JJ (1978) Formation of ergotoxine alkaloids by fermentation and attempts to control their biosynthesis. In: Hütter R, Leisinger T, Nüesch J, Wehrli W (eds) Antibiotics and other secondary metabolites. Academic, New York

    Google Scholar 

  140. Kobel H, Sanglier JJ (1986) Ergot alkaloids. In: Rehm H-J, Reed G (eds) Biotechnology, 4th edn. Weinheim, VCH

    Google Scholar 

  141. Puc A, Socic H (1977) Carbohydrate nutrition of Claviceps purpurea for alkaloid production related to osmolality of media. Eur J Appl Microbiol 4:283–287

    Article  CAS  Google Scholar 

  142. Abe M, Yamatodani S (1964) Preparation of alkaloids by saprophytic culture of ergot fungi. Prog Ind Microbiol 5:203–229

    CAS  Google Scholar 

  143. Amici AM, Minghetti A, Scotti T, Spalla C, Tognoli L (1966) Production of ergotamine by a strain of Claviceps purpurea (Fr.). Tul Experientia 22:415–416

    Article  CAS  Google Scholar 

  144. Mantle PG, Nisbet LJ (1976) Differentiation of Claviceps purpurea in axenic culture. J Gen Microbiol 93:321–334

    Article  CAS  Google Scholar 

  145. Glund K, Kirstan C, Schlee D (1981) Glucose catabolism during alkaloid production in a strain of Claviceps purpurea. Folia Microbiol 26:398–402

    Article  CAS  Google Scholar 

  146. Didec-Brumec M, Puc A, Socic H, Alacevic M (1987) Isolation and characterization of a high yielding ergotoxines producing Claviceps purpurea strains. Food Technol Biotechnol 25:103–109

    Google Scholar 

  147. Spalla C, Filippini S, Grein A (1978) Hypothesis on the regulation mechanisms governing the biosynthesis of alkaloids in Claviceps. Folia Microbiol 23:505–508

    Article  CAS  Google Scholar 

  148. Pažoutová S, Rehacek Z, Vorisek J (1980) Induction of sclerotia-like mycelium in axenic cultures of Claviceps purpurea producing clavine alkaloids. Can J Microbiol 26:363–370

    Article  Google Scholar 

  149. Cvak L (1999) Industrial production of ergot alkaloids. In: Ergot: the genus Claviceps. Harwood Academic, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Mai, P., Li, SM. (2013). Alkaloids Derived from Tryptophan: A Focus on Ergot Alkaloids. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_24

Download citation

Publish with us

Policies and ethics