Skip to main content
Log in

Ferromagnetic coil frequency response and dynamics modeling with fractional elements

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The modeling of coils with ferromagnetic cores is considered. An attempt is made at the application of fractional derivatives because of the success in the modeling of real phenomena in various other fields. Three coils with ferromagnetic cores have been selected for the analysis. In order to obtain a basis for the study, measurements have been taken on a specially designed setup including an arbitrary function generator and a data acquisition device. The measurement process has been controlled by an original algorithm written in C#. The studied model has been considered in several varieties (various numbers of fractional coil and capacitor branches) in a ladder-like structure. The estimation process has been performed in an original program written in C#, applying the COBYLA method for constrained optimization. The modeling and simulation results have been compared through their frequency characteristics. A more critical approach has also been applied, where the measurements and simulations are compared for both a non-sinusoidal waveform and a step function on the source output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Cardelli E (2015) Chapter 4—advances in magnetic hysteresis modeling. Handb Magn Mater 24:323–409

    Article  Google Scholar 

  2. Jastrzȩbski R, Jakubas A, Chwastek K (2018) Relationships between grain size in self-developed soft magnetic composites and the Grucad hysteresis model. J Electr Eng 69(6):485–488

    Google Scholar 

  3. Kachniarz M, Szewczyk R (2017) Study on the Rayleigh hysteresis model and its applicability in modeling magnetic hysteresis phenomenon in ferromagnetic materials. Acta Phys Pol, A 131(5):1244–1249

    Article  Google Scholar 

  4. Jamali A, Della Torre E, Cardelli E, ElBidweihy H, Bennett LH (2016) A vector model for off-axis hysteresis loops using anisotropy field. Phys B 501:113–116

    Article  Google Scholar 

  5. Rodriguez MC, Sanz C (2007) Simple frequency domain model for hysteresis and Eddy currents in cylindrical and parallelepipedal cores. IEEE Trans Magn 43(5):1912–1919

    Article  Google Scholar 

  6. Podbereznaya IB, Medvedev VV, Pavlenko AV, Bol’shenko IA (2019) Selection of optimal parameters for the Jiles–Atherton magnetic hysteresis model. Russ Electr Eng 90:80–85

    Article  Google Scholar 

  7. Bermúdez A, Gómez D, Venegas P (2020) Mathematical analysis and numerical solution of models with dynamic Preisach hysteresis. J Comput Appl Math 367:18

    Article  MathSciNet  MATH  Google Scholar 

  8. Leite JV, Benabou A, Sadowski N (2009) Accurate minor loops calculation with a modified Jiles–Atherton hysteresis model. COMPEL Int J Comput Math Electr Electron Eng 28(3):741–749

    Article  MathSciNet  MATH  Google Scholar 

  9. Benabou A, Clenet S, Piriou F (2003) Comparison of Preisach and Jiles–Atherton models to take into account hysteresis phenomenon for finite element analysis. J Magn Magn Mater 261(1):139–160

    Article  MATH  Google Scholar 

  10. Hussain S, Lowther DA (2017) An efficient implementation of the classical Preisach model. IEEE Trans Magn 54(3):1–4

    Article  Google Scholar 

  11. 5th CEER benchmarking report on the quality of electricity supply https://www.ceer.eu/documents/104400/-/-/0f8a1aca-9139-9bd4-e1f5-cdbdf10c4609 2020-03-21

  12. Buła D, Lewandowski M (2015) Comparison of frequency domain and time domain model of a distributed power supplying system with active power filters (APFs). Appl Math Comput 267:771–779

    Google Scholar 

  13. Sowa M (2018) DAQ-based measurements for ferromagnetic coil modeling using fractional derivatives. In: 2018 International Interdisciplinary PhD Workshop (IIPhDW) Swinoujscie, Poland, pp 91–95

  14. Majka Ł (2018) Applying a fractional coil model for power system ferroresonance analysis. Bull Pol Ac Tech 66(4):467–474

    Google Scholar 

  15. Majka Ł, Klimas M (2019) Diagnostic approach in assessment of a ferroresonant circuit. Electr Eng 101:149–164

    Article  Google Scholar 

  16. Sowa M, Majka Ł (2020) Ferromagnetic core coil hysteresis modeling using fractional derivatives. Nonlinear Dyn 101(2):775–793

    Article  Google Scholar 

  17. Zhang XY, Xie YJ, Li XF (2019) Transient thermoelastic response in a cracked strip of functionally graded materials via generalized fractional heat conduction. Appl Math Model 70:328–349

    Article  MathSciNet  MATH  Google Scholar 

  18. Brociek R, Słota D, Wituła R (2015) Reconstruction of the thermal conductivity coefficient in the time fractional diffusion equation. Adv Model Control Non-integer-Order Syst Lect Notes Electr Eng 320:239–247

    Google Scholar 

  19. Oprzȩdkiewicz K, Mitkowski W, Gawin E, Dziedzic K (2018) The Caputo vs. Caputo-Fabrizio operators in modeling of heat transfer process. Bull Pol Acad Sci Tech Sci 66(4):501–507

    Google Scholar 

  20. Ostalczyk P, Duch P, Brzeziński D, Sankowski D (2015) Order functions selection in the variable-, fractional-order PID controller. Adv Model Control Non-integer-Order Syst Lect Notes Electr Eng 320:159–170

    Google Scholar 

  21. Spałek D (2015) Synchronous generator model with fractional order voltage regulator \({\text{ PI }}^{{\rm b}} {\text{ D }}^{{\rm a}}\). Acta Energetica 23(2):78–84

    Article  Google Scholar 

  22. Psychalinos C, Tsirimokou G, Elwakil A (2016) Switched-capacitor fractional-step. Butterworth Filter Design Circuits Syst Signal Process 35(4):1377–1393

    Article  Google Scholar 

  23. Kawala-Janik A, Podpora M, Gardecki A, Czuczwara W, Baranowski J (2015) Game controller based on biomedical signals. In: 2015 20th international conference on methods and models in automation and robotics (MMAR) Swinoujscie, Poland, pp 934–939

  24. Cioć R, Luft M (2013) Selected issues of fractional calculus in modelling accelerometers used in telematic equipment activities of transport telematics. In: 13th international conference on transport systems telematics, TST 2013 Katowice-Ustroń, Poland, pp 234–242

  25. Kawala-Janik A, Podpora M, Baranowski J, Bauer W, Pelc M (2014) Innovative approach in analysis of EEG and EMG signals—Comparision of the two novel methods. In: 2014 19th international conference on methods and models in automation and robotics (MMAR) Swinoujscie, Poland, pp 804–807

  26. Majka Ł (2020) Using fractional calculus in an attempt at modeling a high frequency AC exciter advances in non-integer order calculus and its applications. In: Proceedings of the 10th international conference on non-integer order calculus and its applications lecture notes in electrical engineering vol 559, pp 55–71

  27. Mitkowski W, Skruch P (2013) Fractional-order models of the supercapacitors in the form of RC ladder networks. Bull Pol Ac Tech 61(3):581–587

    MATH  Google Scholar 

  28. Czuczwara W, Latawiec KJ, Stanisławski R, Łukaniszyn M, Kopka R, Rydel M (2018) Modeling of a supercapacitor charging circuit using two equivalent RC circuits and forward vs. backward fractional-order differences. In: 2018 progress in applied electrical engineering (PAEE) Koscielisko, Poland, pp 1–6

  29. Tarczyński W, Kopka R (2019) Supercapacitor properties under changing load Scientific. J Pol Naval Acad 60(3):81–93

    Google Scholar 

  30. Tang Y, Zhen Y, Fang B (2018) Nonlinear vibration analysis of a fractional dynamic model for the viscoelastic pipe conveying fluid. Appl Math Model 56:123–136

    Article  MathSciNet  MATH  Google Scholar 

  31. Bouras Y, Zorica D, Atanacković TM, Vrcelj Z (2018) A non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete. Appl Math Model 55:551–568

    Article  MathSciNet  MATH  Google Scholar 

  32. Schäfer I, Krüger K (2008) Modelling of Lossy coils using fractional derivatives. J Phys D Appl Phys 41(4):8

    Article  Google Scholar 

  33. Majka Ł (2019) Fractional derivative approach in modeling of a nonlinear coil for ferroresonance analyses. In: 9th international conference on non-integer order calculus and its applications, Lecture notes in electrical engineering, vol 496, pp 135–147

  34. Katugampola U (2015) Mellin transforms of generalized fractional integrals and derivatives. Appl Math Comput 257:566–580

    MathSciNet  MATH  Google Scholar 

  35. Sierociuk D, Malesza W, Macias M (2015) Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl Math Model 39(13):3876–3888

    Article  MathSciNet  MATH  Google Scholar 

  36. Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent—II. Geophys J Int 13(5):529–539

    Article  Google Scholar 

  37. Sowa M (2018) A harmonic balance methodology for circuits with fractional and nonlinear elements. Circuits Syst Signal Process 37:4695–4727

    Article  MathSciNet  Google Scholar 

  38. GW Instek Arbitrary Function Generator Specification https://www.gwinstek.com/en-global/products/detail/AFG-2100_AFG-2000 2020-03-22

  39. NI-9239 (C Series Voltage Input Module) https://www.ni.com/pl-pl/support/model.ni-9239.html 2020-03-22

  40. cDAQ-9174 (CompactDAQ Chassis) https://www.ni.com/pl-pl/support/model.cdaq-9174.html 2020-03-22

  41. Options for Programming NI-DAQmx or NI-DAQ in Visual C# .NET http://www.ni.com/product-documentation/54391/en/ 2020-03-22

  42. Vaníček P (1969) Approximate spectral analysis by least-squares fit. Astrophys Space Sci 4(4):387–391

    Article  Google Scholar 

  43. Accord.NET Framework http://accord-framework.net/index.html 2020-03-22

  44. Powell M (2007) A view of algorithms for optimization without derivatives. Math Today-Bull Inst Math Appl 43(5):170–174

    MathSciNet  Google Scholar 

  45. Gomez-Aguilar J, Yepez-Martínez H, Escobar-Jimenez R, Astorga-Zaragoza C, Reyes-Reyes J (2016) Analytical and numerical solutions of electrical circuits described by fractional derivatives. Appl Math Model 40(21–22):9079–9094

    Article  MathSciNet  MATH  Google Scholar 

  46. Kaczorek T (2015) Positivity of a class of fractional descriptor continuous-time nonlinear systems. Bull Pol Ac: Tech 65(2):561–565

    Google Scholar 

  47. Jakubowska A, Walczak J (2015) Analysis of the transient state in a circuit with supercapacitor Poznan University of Technology Academic Journals. Electr Eng 81:27–34

    Google Scholar 

  48. Lubich C (1985) Fractional linear multistep methods for Abel–Volterra integral equations of the second kind. Math Comput 45(172):463–469

    Article  MathSciNet  MATH  Google Scholar 

  49. Garrappa R (2015) Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math Comput Simul 110:96–112

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhao T, Mao Z, Karniadakis GE (2019) Multi-domain spectral collocation method for variable-order nonlinear fractional differential equations. Comput Methods Appl Mech Eng 348:377–395

    Article  MathSciNet  MATH  Google Scholar 

  51. Hou J, Yang C, Lv X (2020) Jacobi collocation methods for solving the fractional Bagley–Torvik equation. IAENG Int J Appl Math 50(1):7

    MathSciNet  Google Scholar 

  52. Brzeziński D, Ostalczyk P (2014) High-accuracy numerical integration methods for fractional order derivatives and integrals computations. Bull Pol Ac: Tech 62(4):723–733

    Google Scholar 

  53. Momani S, Noor M (2006) Numerical methods for fourth order fractional integro-differential equations. Appl Math Comput 182:754–760

    MathSciNet  MATH  Google Scholar 

  54. Sajewski L (2016) Descriptor fractional discrete-time linear system with two different fractional orders and its solution. Bull Pol Ac: Tech 62(1):15–20

    MathSciNet  Google Scholar 

  55. Cui M (2009) Compact finite difference method for the fractional diffusion equation. J Comput Phys 228:7792–7804

    Article  MathSciNet  MATH  Google Scholar 

  56. Sowa M (2014) A subinterval-based method for circuits with fractional order elements. Bull Pol Ac: Tech 62(3):449–454

    MathSciNet  Google Scholar 

  57. Sowa M (2017) Application of SubIval, a method for fractional-order derivative computations in IVPs. In: Theory and applications of non-integer order systems lecture notes in electrical engineering, vol 407, pp 489–500

  58. Sowa M (2017) Numerical computations of the fractional derivative in IVPs, examples in Matlab and Mathematica Informat. Autom Pomiary Gosp Ochr Środ 7(3):19–22

    MathSciNet  Google Scholar 

  59. Sowa M (2017) Error computation strategies in an adaptive step size solver for time fractional problems. Selected problems on experimental mathematics, pp 89–102

  60. Sowa M (2018) Application of subival in solving initial value problems with fractional derivatives. Appl Math Comput 319:86–103

    MathSciNet  MATH  Google Scholar 

  61. Research. Marcin Sowa, PhD, DSc (EEng.), Assoc Prof http://msowascience.com 2020-03-22

  62. Garrappa R (2018) Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6(2):16

    Article  MATH  Google Scholar 

  63. Khan MA, Atangana A (2020) Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alex Eng J 59:2379–2389

    Article  Google Scholar 

  64. Saad K, Khader MM, Gómez-Aguilar JF, Baleanu D (2019) Numerical solutions of the fractional Fisher’s type equations with Atangana–Baleanu fractional derivative by using spectral collocation methods Chaos: an interdisciplinary. J Nonlinear Sci 29:9

    MATH  Google Scholar 

  65. Sowa M (2018) A local truncation error estimation for a subival solver. Bull Pol Ac: Tech 66(4):475–484

  66. Lewandowski M, Majka Ł, Świetlicka A (2018) Effective estimation of angular speed of synchronous generator based on stator voltage measurement. Int J Electr Power Energy Syst 100:391–399

    Article  Google Scholar 

  67. Software for Fractional Differential Equations and related problems https://www.dm.uniba.it/members/garrappa/software 2020-03-22

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Sowa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Fractional DAE formulation

The equations for the considered circuit can be given in terms of a general formula [60] of fractional DAE (differential algebraic equations):

$$\begin{aligned} {\left\{ \begin{array}{ll} \varvec{M}_{\mathrm {I}} \varvec{y} (t) + \varvec{M}_{\mathrm {II}} \varvec{x} (t) = \varvec{T} \varvec{v} (t), \\ \mathbf {D} _t ^{ \varvec{\alpha } } \varvec{x}(t) + \varvec{M}_{\mathrm {III}} \varvec{y} (t) + \varvec{M}_{\mathrm {IV}} \varvec{x} (t) = \varvec{0}_{n_x}, \end{array}\right. } \end{aligned}$$
(12)

where

  • \(\varvec{x}(t)\) is the vector of \(n_x\) state variables (in this case capacitor voltages and coil currents),

  • \(\varvec{y}(t)\) is a vector with \(n_y\) elements, which can be any remaining variables deemed useful (e.g., node potentials, capacitor currents and coil voltages),

  • \(\varvec{v}(t)\) is the vector of source time functions, which will only have one entry in the case of the studied problem—the voltage source E(t),

  • \(\mathbf {D}_t^{ \varvec{\alpha } }\varvec{x}(t)\) is the vector of fractional derivatives:

    $$\begin{aligned} \mathbf {D} _t ^{ \varvec{\alpha } } \varvec{x}(t) = \left[ \begin{array}{llll} _{t_0} ^{} {\mathrm {D}} _t ^{ \alpha _1 } x_1(t)&_{t_0} ^{} {\mathrm {D}} _t ^{ \alpha _2 } x_2(t)&\ldots&_{t_0} ^{} {\mathrm {D}} _t ^{ \alpha _{n_x} } x_{n_x}(t) \end{array} \right] ^{\mathrm {T}}, \end{aligned}$$
    (13)
  • \(\varvec{M}_{\mathrm {I}}\) is an \(n_y \times n_y\) matrix,

  • \(\varvec{M}_{\mathrm {II}}\) is an \(n_y \times n_x\) matrix,

  • \(\varvec{M}_{\mathrm {III}}\) is an \(n_x \times n_y\) matrix,

  • \(\varvec{M}_{\mathrm {IV}}\) is an \(n_x \times n_x\) matrix,

  • \(\varvec{T}\) is an \(n_y \times n_v\) matrix,

  • the notation \(\varvec{0}_k\) represents a vector of k zeros.

Now the appropriate entries in Eq. (12) can be given. The dependency on time is only given, when there has been a need to emphasize it (e.g., u(t) is given simply as u and \(\varvec{y}(t)\) is given as \(\varvec{y}\)). The number of differential equations in the system is determined by the number of fractional coils and capacitors, where \(n_x = n + m\). The derivative orders are given in:

$$\begin{aligned} \varvec{\alpha } = [\alpha _1\;\;\alpha _2\;\;\ldots \;\;\alpha _n\;\;\beta _1\;\;\beta _2\;\;\ldots \;\;\beta _m]. \end{aligned}$$
(14)

The vector \(\varvec{x}\) is filled with the coil currents and capacitor voltages:

$$\begin{aligned} \varvec{x} = [i_{L_1}\;\;i_{L_2}\;\;\ldots \;\;i_{L_n}\;\;u_{C_1}\;\;u_{C_2}\;\;\ldots \;\;u_{C_m}]^{\mathrm {T}}. \end{aligned}$$
(15)

The source vector has only one entry, being the time function of the source:

$$\begin{aligned} \varvec{v}(t) = [E(t)]. \end{aligned}$$
(16)

The additional variables are the model output voltage u and current i (for easy access when obtaining the results), along with the coil voltages and the capacitor currents:

$$\begin{aligned} \varvec{y} = [u\;\;i\;\; u_{L_1}\;\;u_{L_2}\;\;\ldots \;\;u_{L_n}\;\;i_{C_1}\;\;i_{C_2}\;\;\ldots \;\;i_{C_m}]^{\mathrm {T}}, \end{aligned}$$
(17)

where one can notice that \(n_y = 2 + n + m\).

A current balance at the node with the voltage u yields the following equation:

$$\begin{aligned} i - \sum _{k = 1}^{m} i_{C_k} - \frac{u}{R_1} + \frac{u_{L_1}}{R_1} = 0, \end{aligned}$$
(18)

which allows to fill the following entries for \(\varvec{M}_{\mathrm {I}}\):

$$\begin{aligned} \begin{array}{c} \varvec{M}_{{\mathrm {I}}\;1,2} = 1, \\ \varvec{M}_{{\mathrm {I}}\;1,k} = -1, k = n+3, n+4, \ldots n+m+2, \\ \varvec{M}_{{\mathrm {I}}\;1,1} = -\frac{1}{R_1} \\ \varvec{M}_{{\mathrm {I}}\;1,3} = \frac{1}{R_1}, \end{array} \end{aligned}$$
(19)

Next, the following equation is considered:

$$\begin{aligned} (R_{\mathrm {gen}} + R_{\mathrm {meas}}) i + u = E, \end{aligned}$$
(20)

which yields the only nonzero entry in \(\varvec{T}\):

$$\begin{aligned} \varvec{T}_{2,1} = 1 \end{aligned}$$
(21)

along with the entries:

$$\begin{aligned} \begin{array}{c} \varvec{M}_{{\mathrm {I}}\;2,1} = 1, \\ \varvec{M}_{{\mathrm {I}}\;2,2} = R_{\mathrm {gen}} + R_{\mathrm {meas}}. \end{array} \end{aligned}$$
(22)

For the node above the coil branches, one can derive a current balance, which yields the following equation:

$$\begin{aligned} \frac{u}{R_1} - \frac{u_{L_1}}{R_1} - \frac{u_{L_1}}{R_{\mathrm {F}}} - \sum _{k = 1}^{n} i_{L_k} = 0, \end{aligned}$$
(23)

which yields the following entries for \(\varvec{M}_{\mathrm {I}}\):

$$\begin{aligned} \begin{array}{c} \varvec{M}_{{\mathrm {I}}\;3,1} = \frac{1}{R_1} \\ \varvec{M}_{{\mathrm {I}}\;3,3} = -\frac{1}{R_1} -\frac{1}{R_{\mathrm {F}}}, \end{array} \end{aligned}$$
(24)

and the following ones for \(\varvec{M}_{\mathrm {II}}\):

$$\begin{aligned} \varvec{M}_{{\mathrm {II}}\;3,k} = -1, \;\; k = 1, 2, \ldots n. \end{aligned}$$
(25)

Each additional fractional coil (i.e., \(n > 1\)) voltage dependency:

$$\begin{aligned} u_{L_1} - u_{L_k} - R_k i_{L_k} = 0, \;\; k = 2, 3, \ldots n, \end{aligned}$$
(26)

yields the following entries:

$$\begin{aligned} \begin{array}{c} \varvec{M}_{{\mathrm {I}}\;3+k, 3} = 1, \;\; k = 1, 2, \ldots n - 1, \\ \varvec{M}_{{\mathrm {I}}\;3+k, 3+k} = -1, \;\; k = 1, 2, \ldots n - 1, \\ \varvec{M}_{{\mathrm {II}}\;3+k, 1+k} = -1, \;\; k = 1, 2, \ldots n - 1. \end{array} \end{aligned}$$
(27)

Each fractional capacitor voltage dependency yields an equation:

$$\begin{aligned} u - R_{Ck} i_{C_k} - u_{C_k} = 0, \;\; k = 1, 2, \ldots m. \end{aligned}$$
(28)

which gives the following entries:

$$\begin{aligned} \begin{array}{c} \varvec{M}_{{\mathrm {I}}\;2+n+k, 1} = 1, \;\; k = 1, 2, \ldots m. \\ \varvec{M}_{{\mathrm {I}}\;2+n+k, 2+n+k} = -R_{Ck}, \;\; k = 1, 2, \ldots m. \\ \varvec{M}_{{\mathrm {II}}\;2+n+k, n+k} = -1, \;\; k = 1, 2, \ldots m. \end{array} \end{aligned}$$
(29)

The differential equation for each fractional coil:

$$\begin{aligned} L_k \; _{t_0}^{} {\mathrm {D}}_t ^{\alpha _k} i_{L_k} = u_{L_k}, \;\; k = 1, 2, \ldots n, \end{aligned}$$
(30)

introduces entries in \(\varvec{M}_{\mathrm {III}}\):

$$\begin{aligned} \begin{array}{c} \varvec{M}_{{\mathrm {III}}\;k, 2+k} = -\frac{1}{L_k} \;\; k = 1, 2, \ldots n, \end{array} \end{aligned}$$
(31)

The same is done for each fractional capacitor differential equation:

$$\begin{aligned} C_k \; _{t_0}^{} {\mathrm {D}}_t ^{\alpha _k} u_{C_k} = i_{C_k}, \;\; k = 1, 2, \ldots m, \end{aligned}$$
(32)

which introduces the following entries:

$$\begin{aligned} \begin{array}{c} \varvec{M}_{{\mathrm {III}}\;n+k, 2+n+k} = -\frac{1}{C_k} \;\; k = 1, 2, \ldots m. \end{array} \end{aligned}$$
(33)

Appendix B: Numerical solution of fractional DAE

The SubIval numerical method has been designed to be used in time-stepping solvers [60], where for each time step \(t = t_{\mathrm {now}}\), following the method’s internal computations involving subinterval dynamics and polynomial differintegration, for each variable x(t) under a fractional time derivative one can obtain the approximation:

$$\begin{aligned} _{t_0} ^{} {\mathrm {D}} _{t_{\mathrm {now}}} ^{{\alpha }} x(t) \approx a x_{\mathrm {now}} + b . \end{aligned}$$
(34)

The details on this can be found i.a. in [60, 65]. A time-step size adaptive numerical solver basing on SubIval has been implemented in C# and the computations of the time dependent analyses of this paper have been performed with that solver.

There are a few options for the solver that need to be given. These are:

  • the maximum polynomial order in the SubIval internal computations (\(p = 4\) has been selected for the computations in this paper),

  • the maximum allowed estimated error value (\(e_{\mathrm {max}} = 10^{-1}\;\%\) in this paper) and the so-called control error, which is the value the estimated error should tend to (\(e_{\mathrm {ctrl}} = 10^{-2}\;\%\) in this paper); a detailed description on this is given in [65],

  • the minimum and maximum time-step size values, denoted by \({\Delta }t_{\mathrm {min}}\) and \({\Delta }t_{\mathrm {max}}\), respectively (for the step response computations \({\Delta }t_{\mathrm {min}} = t_{\mathrm {max}}/2000\) and \({\Delta }t_{\mathrm {max}} = t_{\mathrm {max}}/100\) have been selected, while for the non-sinusoidal response computations \({\Delta }t_{\mathrm {min}} = T/2000\) and \({\Delta }t_{\mathrm {max}} =T/20\)).

It is also worthwhile to mention that widely available solvers for fractional differential equations or fractional DAE are a rarity. Unlike solvers for ordinary differential equations of DAE where first-order derivatives appear, there are many solvers available, e.g., allowing to solve even very complicated problems [66]; however, not ones where fractional derivatives appear. Only a few instances of solvers can be found [49, 62, 67]. A solver basing on SubIval (versions for Matlab and Octave) is also available. It can be found on the web page [61].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sowa, M. Ferromagnetic coil frequency response and dynamics modeling with fractional elements. Electr Eng 103, 1737–1752 (2021). https://doi.org/10.1007/s00202-020-01190-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01190-5

Keywords

Navigation