Skip to main content
Log in

Switched-Capacitor Fractional-Step Butterworth Filter Design

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Switched-capacitor fractional-step filter design of low-pass filter prototypes with Butterworth characteristics is reported in this work for the first time. This is achieved using discrete-time integrators which implement both the bilinear and the Al-Alaoui s-to-z transformations. Filters of orders 1.2, 1.5 and 1.8 as well as 3.2, 3.5, and 3.8 are designed and verified using transistor-level simulations with Cadence on AMS \(0.35\,\upmu \)m CMOS process. Digital programmability of the fractional-step filters is also achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Acharya, S. Das, I. Pan, S. Das, Extending the concept of analog Butterworth filter for fractional order systems. Signal Process. 94, 409–420 (2014)

    Article  Google Scholar 

  2. P. Ahmadi, B. Maundy, A. Elwakil, L. Belostotski, High-quality factor asymmetric-slope band-pass filters: a fractional-order capacitor approach. IET Circuits Devices Syst. 6(3), 187–197 (2012)

    Article  Google Scholar 

  3. M.A. Al-Alaoui, Al-Alaoui operator and the new transformation polynomials for discretization of analogue systems. Electr. Eng. 90(6), 455–467 (2008)

    Article  Google Scholar 

  4. A. Ali, A. Radwan, A. Soliman, Fractional order Butterworth filter: active and passive realizations. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 346–354 (2013)

    Article  Google Scholar 

  5. P. Allen, E. Sanchez-Sinencio, Switched-Capacitor Filters (Van Nostrand Reinhold, Hoboken, 1984)

    Book  Google Scholar 

  6. K. Biswas, S. Sen, P. Dutta, Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Trans. Circuits Syst. II Express Br. 53(9), 802–806 (2006)

    Article  Google Scholar 

  7. A. Elwakil, Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10(4), 40–50 (2010)

    Article  Google Scholar 

  8. T.J. Freeborn, A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 416–424 (2013)

    Article  Google Scholar 

  9. T.J. Freeborn, B. Maundy, A. Elwakil, Field programmable analogue array implementation of fractional step filters. IET Circuits Devices Syst. 4(6), 514–524 (2010a)

    Article  Google Scholar 

  10. T. Freeborn, B. Maundy, A. Elwakil, Towards the realization of fractional-step filters, in Proceedings of IEEE International Symposium on Circuits and Systems ( ISCAS), pp. 1037–1040 (2010b)

  11. B. Krishna, K. Reddy, Active and passive realization of fractance device of order 0.5, in Active and Passive Electronic Components. doi:10.1155/2008/369421 (2008)

  12. F. Maloberti, F. Montecchi, G. Torelli, E. Halasz, Bilinear design of fully differential switched-capacitor filters. IET Proc. Pt. G 132(6), 266–272 (1985)

    Google Scholar 

  13. B. Maundy, A.S. Elwakil, T. Freeborn, On the practical realization of higher-order filters with fractional stepping. Signal Process. 91(3), 484–491 (2011)

    Article  MATH  Google Scholar 

  14. P. Mohan, V. Ramachandran, M. Swamy, Switched Capacitor Filters: Theory, Analysis, and Design (Prentice Hall, London, 1995)

    Google Scholar 

  15. M. Ortigueira, An introduction to the fractional continuous-time linear systems: the 21st century systems. IEEE Circuits Syst. Mag. 8(3), 19–26 (2008)

    Article  Google Scholar 

  16. A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 55, 2051–2063 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Santamaría, J. Valverde, R. Pérez-Aloe, B. Vinagre, Micro-electronic implementations of fractional-order integro-differential operators. J. Comput. Nonlinear Dyn. 3(2) (2008). doi:10.1115/1.2833907

  18. G. Tsirimokou, C. Laoudias, C. Psychalinos, 0.5V fractional-order companding filters. Int. J. Circuit Theory Appl. (2014). doi:10.1002/cta.1995

  19. G. Tsirimokou, C. Psychalinos, Ultra-low voltage fractional-order differentiator and integrator topologies: an application for handling noisy ECGs. Analog Integr. Circuits Signal Process. 81(2), 393–405 (2014)

    Article  Google Scholar 

  20. P. Varshney, M. Gupta, G. Visweswaran, Switched capacitor realization of fractional order differentiator. In: Proceedings of 10th International Symposium on Integrated Circuits, Devices and Systems (ISIC) Singapore, pp. 215–218 (2004)

  21. P. Varshney, M. Gupta, G. Visweswaran, New switched capacitor fractional order integrator. J. Act. Passive Electron. Devices 2(3), 187–197 (2007)

    Google Scholar 

  22. P. Varshney, M. Gupta, G. Visweswaran, Implementation of switched-capacitor fractional order differentiator circuit. Int. J. Electron. 95(6), 531–547 (2008)

    Article  Google Scholar 

  23. P. Varshney, M. Gupta, G. Visweswaran, Switched capacitor realizations of fractional-order differentiators and integrators based on an operator with improved performance. Radioengineering 20(1), 340–348 (2011)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grant E.029 from the Research Committee of the University of Patras (Programme K. Karatheodori).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Elwakil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Psychalinos, C., Tsirimokou, G. & Elwakil, A.S. Switched-Capacitor Fractional-Step Butterworth Filter Design. Circuits Syst Signal Process 35, 1377–1393 (2016). https://doi.org/10.1007/s00034-015-0110-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0110-9

Keywords

Navigation