Skip to main content

Advertisement

Log in

Effects of whole body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This systematic review and meta-analysis of randomized controlled trials (RCTs) identified significant effects of whole body vibration (WBV) on bone mineral density (BMD) of the lumbar spine (in the sensitivity analysis and seven subgroup analyses), femoral neck (in one subgroup analysis), and trochanter (four subgroup analyses) in postmenopausal women, but not other measurements of BMD.

Introduction

Interventions using WBV training have been conducted in postmenopausal women, aimed at increasing BMD; however, the results are contradictory. Our objective is to conduct a systematic review and meta-analysis of RCTs examining WBV effect on BMD.

Methods

RCTs were considered eligible, with follow-up ≥6 months, which verified the effects of WBV on the BMD of postmenopausal women. The calculations of the meta-analysis were performed through the weighted mean difference between the WBV and control groups, or the WBV and combined training, through the absolute change between pre- and post-intervention in the areal bone mineral density (aBMD) or trabecular volumetric bone mineral density (vBMDt).

Results

Fifteen RCTs were included in the meta-analysis. No differences were observed in the primary analysis. WBV was found to improve aBMD compared with the control group, after exclusion of studies with low quality methodological (lumbar spine), when excluding the studies which combined WBV with medication or combined training (lumbar spine), with the use of low frequency and high magnitude (lumbar spine and trochanter), high frequency and low magnitude (lumbar spine), high cumulative dose and low magnitude (lumbar spine), low cumulative dose and high magnitude (lumbar spine and trochanter), with semi-flexed knee (lumbar spine, femoral neck, and trochanter), and side-alternating type of vibration (lumbar spine and trochanter).

Conclusions

Despite WBV presenting potential to act as a coadjuvant in the prevention or treatment of osteoporosis, especially for aBMD of the lumbar spine, the ideal intervention is not yet clear. Our subgroup analyses helped to demonstrate the various factors which appear to influence the effects of WBV on BMD, contributing to clinical practice and the definition of protocols for future interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Three attempts were made to contact the author for clarification of the missing information, but there was no response.

References

  1. Santin-Medeiros F, Santos-Lozano A, Rey-López JP, Garatachea N (2015) Effects of eight months of whole body vibration training on hip bone mass in older women. Nutr Hosp 31:1654–1659. doi:10.3305/nh.2015.31.4.8441

    PubMed  Google Scholar 

  2. Liphardt AM, Schipilow J, Hanley DA, Boyd SK (2015) Bone quality in osteopenic postmenopausal women is not improved after 12 months of whole-body vibration training. Osteoporos Int 26:911–920. doi:10.1007/s00198-014-2995-8

    Article  CAS  PubMed  Google Scholar 

  3. Leung KS, Li CY, Tse YK, Choy TK, Leung PC, Hung VWY, Chan SY, Leung AHC, Cheung WH (2014) Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly—a cluster—randomized controlled trial. Osteoporos Int 25:1785–1795. doi:10.1007/s00198-014-2693-6

    Article  CAS  PubMed  Google Scholar 

  4. Lai CL, Tseng SY, Chen CN, Liao WC, Wang CH, Lee MC, Hsu PS (2013) Effect of 6 months of whole body vibration on lumbar spine bone density in postmenopausal women: a randomized controlled trial. Clin Interv Aging 8:1603–1609. doi:10.2147/CIA.S53591

    PubMed  PubMed Central  Google Scholar 

  5. Stolzenberg N, Belavý DL, Beller G, Armbrecht G, Semler J, Felsenberg D (2013) Bone strength and density via pQCT in post-menopausal osteopenic women after 9 months resistive exercise with whole body vibration or proprioceptive exercise. J Musculoskelet Neuronal Interact 13:66–76

    CAS  PubMed  Google Scholar 

  6. Karakiriou SK, Douda HT, Smilios IG, Volaklis KA, Tokmakidis SP (2012) Effects of vibration and exercise training on bone mineral density and muscle strength in post-menopausal women. Eur J Sport Sci 12:81–88. doi:10.1080/17461391.2010.536581

    Article  Google Scholar 

  7. Slatkovska L, Alibhai SMH, Beyene J, Hu H, Demaras A, Cheung AM (2011) Effect of 12 months of whole-body vibration therapy on bone density and structure in postmenopausal women. A randomized trial. Ann Intern Med 155:668–679. doi:10.7326/0003-4819-155-10-201111150-00005

    Article  PubMed  Google Scholar 

  8. Verschueren SMP, Bogaerts A, Delecluse C, Claessens AL, Haentjens P, Vanderschueren D, Boonen S (2011) The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: a 6-month randomized, controlled trial. J Bone Miner Res 26:42–49. doi:10.1002/jbmr.181

    Article  CAS  PubMed  Google Scholar 

  9. Von Stengel S, Kemmler W, Bebenek M, Engelke K, Kalender WA (2011) Effects of whole-body vibration training on different devices on bone mineral density. ACSM 43:1071–1079. doi:10.1249/MSS.0b013e318202f3d3

    Google Scholar 

  10. Von Stengel S, Kemmler W, Engelke K, Kalender WA (2011) Effects of whole body vibration on bone mineral density and falls: results of the randomized controlled ELVIS study with postmenopausal women. Osteoporos Int 22:317–325. doi:10.1007/s00198-010-1215-4

    Article  Google Scholar 

  11. Gusi N, Raimundo A, Leal A (2006) Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC Musculoskelet Disord 7:92. doi:10.1186/1471-2474-7-92

    Article  PubMed  PubMed Central  Google Scholar 

  12. Iwamoto J, Takeda T, Sato Y, Uzawa M (2005) Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate. Aging Clin Exp Res 17:157–163

    Article  CAS  PubMed  Google Scholar 

  13. Verschueren SMP, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S (2004) Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 19:352–359. doi:10.1359/JBMR.0301245

    Article  PubMed  Google Scholar 

  14. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K (2004) Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 19:343–351. doi:10.1359/JBMR.0301251

    Article  PubMed  Google Scholar 

  15. Russo CR, Lauretani F, Bandinelli S, Bartali B, Cavazzini C, Guralnik JM, Ferrucci L (2003) High-frequency vibration training increases muscle power in postmenopausal women. Arch Phys Med Rehabil 84:1854–1857. doi:10.1016/S0003-9993(03)00357-5

    Article  PubMed  Google Scholar 

  16. Slatkovska L, Beyene J, Alibhai SMH, Wong Q, Sohail QZ, Cheung AM (2014) Effect of whole-body vibration on calcaneal quantitative ultrasound measurements in postmenopausal women: a randomized controlled trial. Calcif Tissue Int 95:547–556. doi:10.1007/s00223-014-9920-1

    Article  CAS  PubMed  Google Scholar 

  17. Beck BR, Norling TL (2010) The effect of eight months of twice-weekly low or higher intensity whole body vibration on risk factors for postmenopausal hip fracture. Am J Phys Med Rehabil 89:997–1009. doi:10.1097/PHM.0b013e3181f71063

    Article  PubMed  Google Scholar 

  18. Bemben DA, Palmer IJ, Bemben MG, Knehans AW (2010) Effects of combined whole-body vibration and resistance training on muscular strength and bone metabolism in postmenopausal women. Bone 47:650–656. doi:10.1016/j.bone.2010.06.019

    Article  PubMed  Google Scholar 

  19. Ruan X, Jin F, Liu Y, Peng Z, Sun Y (2008) Effects of vibration therapy on bone mineral density in postmenopausal women with osteoporosis. Chin Med J 121:1155–1158

    PubMed  Google Scholar 

  20. Zaki ME (2014) Effects of whole body vibration and resistance training on bone mineral density and anthropometry in obese postmenopausal women. J Osteoporos 2014:702589. doi:10.1155/2014/702589

    Article  PubMed  PubMed Central  Google Scholar 

  21. Christenson ES, Jiang X, Kagan R, Schnatz PF (2012) Osteoporosis management in post-menopausal women. Minerva Ginecol 64:181–194

    CAS  PubMed  Google Scholar 

  22. Cranney A, Guyatt G, Griffith L, Wells G, Tugwell P, Rosen C, Osteoporosis Methodology Group and The Osteoporosis Research Advisory Group (2002) Meta-analyses of therapies for postmenopausal osteoporosis. IX: summary of meta-analyses of therapies for postmenopausal osteoporosis. Endocr Rev 23:570–578. doi:10.1210/er.2001-9002

    Article  CAS  PubMed  Google Scholar 

  23. Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, Harbour RT, Caldwell LM, Creed G (2011) Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev 6, CD000333. doi:10.1002/14651858.CD000333.pub2

    Google Scholar 

  24. Liang Y-Q, Qi M-C, Xu J, Xu J, Liu H-W, Dong W, Li JY, Hu M (2014) Low-magnitude high-frequency loading, by whole-body vibration, accelerates early implant osseointegration in ovariectomized rats. Mol Med Rep 10:2835–2842. doi:10.3892/mmr.2014.2597

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vanleene M, Shefelbine SJ (2013) Therapeutic impact of low amplitude high frequency whole body vibrations on the osteogenesis imperfecta mouse bone. Bone 53:507–514. doi:10.1016/j.bone.2013.01.023

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shi H-F, Cheung W-H, Qin L, Leung AH-C, Leung KS (2010) Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone. Bone 46:1299–1305. doi:10.1016/j.bone.2009.11.028

    Article  PubMed  Google Scholar 

  27. Rauch F, Sievanen H, Boonen S, Cardinale M, Degens H, Felsenberg D, Roth J, Schoenau E, Verschueren S, Rittweger J (2010) Reporting whole-body vibration intervention studies: recommendations of the International Society of Musculoskeletal and Neuronal Interactions. J Musculoskelet Neuronal Interact 10:193–198

    CAS  PubMed  Google Scholar 

  28. Rauch F (2009) Vibration therapy. Dev Med Child Neurol 51:166–168. doi:10.1111/j.1469-8749.2009.03418.x

    Article  PubMed  Google Scholar 

  29. Christiansen BA, Silva MJ (2006) The effect of varying magnitudes of whole-body vibration on several skeletal sites in mice. Ann Biomed Eng 34:1149–1156. doi:10.1007/s10439-006-9133-5

    Article  PubMed  Google Scholar 

  30. Slatkovska L, Alibhai SMH, Beyene J, Cheung AM (2010) Effect of whole-body vibration on BMD: a systematic review and meta-analysis. Osteoporos Int 21:1969–1980. doi:10.1007/s00198-010-1228-z

    Article  CAS  PubMed  Google Scholar 

  31. Lau RWK, Liao LR, Yu F, Teo T, Chung RCK, Pang MYC (2011) The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: a systematic review and meta-analysis. Clin Rehabil 25:975–988. doi:10.1177/0269215511426644

    Article  PubMed  Google Scholar 

  32. Uman LS (2011) Systematic reviews and meta-analyses. J Can Acad Child Adolesc Psychiatry 20:57–59

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mancini MC, Cardoso JR, Sampaio RF, Costa LCM, Cabral CMN, Costa LOP (2014) Tutorial for writing systematic reviews for the Brazilian Journal of Physical Therapy (BJPT). Braz J Phys Ther 18:471–480. doi:10.1590/bjpt-rbf.2014.0077

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JPA et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6, e1000100. doi:10.1371/journal.pmed.1000100

    Article  PubMed  PubMed Central  Google Scholar 

  35. Centre for Evidence-Based Medicine. Oxford (2012) Available from: http://www.cebm.net

  36. Maher CG, Moseley AM, Sherrington C, Elkins MR, Herbert RD (2008) A description of the trials, reviews and practice guidelines indexed in the PEDro database. Phys Ther 88:1068–1077. doi:10.2522/ptj.20080002

    Article  PubMed  Google Scholar 

  37. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 83:713–721

    PubMed  Google Scholar 

  38. The Centre of Evidence-Based Physiotherapy. Sydney (2012) Available from: http://www.pedro.org.au

  39. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12. doi:10.1016/0197-2456(95)00134-4

    Article  CAS  PubMed  Google Scholar 

  40. Verhagen AP, de Vet HC, de Bie RA, Kessels AG, Boers M, Bouter LM, Knipschild PG (1998) The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol 51:1235–1241. doi:10.1016/S0895-4356(98)00131-0

    Article  CAS  PubMed  Google Scholar 

  41. Wysocki A, Butler M, Shamliyan T, Kane RL (2011) Whole-body vibration therapy for osteoporosis: state of the science. Ann Intern Med 155:680–686. doi:10.7326/0003-4819-155-10-201111150-00006

    Article  PubMed  Google Scholar 

  42. Higgins JPT, Green S (2011) Cochrane’s handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. In: The Cochrane Collaboration. Available via http:// http://handbook.cochrane.org/. Accessed 18 November 2015

  43. Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A (2007) Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet 370:657–666. doi:10.1016/S0140-6736(07)61342-7

    Article  CAS  PubMed  Google Scholar 

  44. Wolff J (1986) The law of bone remodeling. Springer, Berlin. doi:10.1007/978-3-642-71031-5

    Book  Google Scholar 

  45. Rubin C, Pope M, Fritton JC, Magnusson M, Hansson T, McLeod K (2003) Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine (Phila Pa 1976) 28:2621–2627

    Article  Google Scholar 

  46. Judex S, Rubin CT (2010) Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? J Musculoskelet Neuronal Interact 10:3–11

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kiel DP, Hannan MT, Barton BA, Bouxsein ML, Sisson E, Lang T, Allaire B, Dewkett D, Carroll D, Magaziner J, Shane E, Leary ET, Zimmerman S, Rubin CT (2015) Low-magnitude mechanical stimulation to improve bone density in persons of advanced age: a randomized, placebo-controlled trial. J Bone Miner Res 30:1319–1328. doi:10.1002/jbmr.2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Oliveira.

Ethics declarations

Conflicts of interest

None.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 17.3 kb)

Supplementary Fig. 1

(DOCX 515 kb)

Supplementary Fig. 2

(DOCX 565 kb)

Supplementary Fig. 3

(DOCX 465 kb)

Supplementary Fig. 4

(DOCX 443 kb)

Supplementary Fig. 5

(DOCX 398 kb)

Supplementary Fig. 6

(DOCX 481 kb)

Supplementary Fig. 7

(DOCX 589 kb)

Supplementary Fig. 8

(DOCX 577 kb)

Supplementary Fig. 9

(DOCX 492 kb)

Supplementary Fig. 10

(DOCX 463 kb)

Supplementary Fig. 11

(DOCX 516 kb)

Supplementary Fig. 12

(DOCX 637 kb)

Supplementary Fig. 13

(DOCX 450 kb)

Supplementary Fig. 14

(DOCX 647 kb)

Supplementary Fig. 15

(DOCX 17.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, L.C., Oliveira, R.G. & Pires-Oliveira, D.A.A. Effects of whole body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis. Osteoporos Int 27, 2913–2933 (2016). https://doi.org/10.1007/s00198-016-3618-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3618-3

Keywords

Navigation