Skip to main content

Advertisement

Log in

Effect of Whole-Body Vibration on Calcaneal Quantitative Ultrasound Measurements in Postmenopausal Women: A Randomized Controlled Trial

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the effect of whole-body vibration (WBV) on calcaneal quantitative ultrasound (QUS) measurements; which has rarely been examined. We conducted a single-centre, 12-month, randomized controlled trial. 202 postmenopausal women with BMD T score between −1.0 and −2.5, not receiving bone medications, were asked to stand on a 0.3 g WBV platform oscillating at either 90- or 30-Hz for 20 consecutive minutes daily, or to serve as controls. Calcium and vitamin D was provided to all participants. Calcaneal broadband attenuation (BUA), speed of sound, and QUS index were obtained as pre-specified secondary endpoints at baseline and 12 months by using a Hologic Sahara Clinical Bone Sonometer. 12-months of WBV did not improve QUS parameters in any of our analyses. While most of our analyses showed no statistical differences between the WBV groups and the control group, mean calcaneal BUA decreased in the 90-Hz (−0.4 [95 % CI −1.9 to 1.2] dB MHz−1) and 30-Hz (−0.7 [95 % CI −2.3 to 0.8] dB MHz−1) WBV groups and increased in the control group (1.3 [95 % CI 0.0–2.6] dB MHz−1). Decreases in BUA in the 90-, 30-Hz or combined WBV groups were statistically different from the control group in a few of the analyses including all randomized participants, as well as in analyses excluding participants who had missing QUS measurement and those who initiated hormone therapy or were <80 % adherent. Although there are consistent trends, not all analyses reached statistical significance. 0.3 g WBV at 90 or 30 Hz prescribed for 20 min daily for 12 months did not improve any QUS parameters, but instead resulted in a statistically significant, yet small, decrease in calcaneal BUA in postmenopausal women in several analyses. These unexpected findings require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Slatkovska L, Alibhai SM, Beyene J, Cheung AM (2010) Effect of whole-body vibration on BMD: a systematic review and meta-analysis. Osteoporos Int 21(12):1969–1980. doi:10.1007/s00198-010-1228-z

    Article  CAS  PubMed  Google Scholar 

  2. Kiiski J, Heinonen A, Järvinen TL, Kannus P, Sievänen H (2008) Transmission of vertical whole body vibration to the human body. J Bone Miner Res 23(8):1318–1325. doi:10.1359/jbmr.080315

    Article  PubMed  Google Scholar 

  3. Rubin C, Pope M, Fritton JC, Magnusson M, Hansson T, McLeod K (2003) Transmissibility of 15-Hertz to 35-Hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine 28(23):2621–2627

    Article  PubMed  Google Scholar 

  4. Guglielmi G, Scalzo G, de Terlizzi F, Peh WC (2010) Quantitative ultrasound in osteoporosis and bone metabolism pathologies. Radiol Clin North Am 48(3):577–588. doi:10.1016/j.rcl.2010.02.013

    Article  PubMed  Google Scholar 

  5. Sasso M, Haïat G, Yamato Y, Naili S, Matsukawa M (2008) Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone. J Biomech 41(2):347–355

    Article  PubMed  Google Scholar 

  6. Verschueren SM, Bogaerts A, Delecluse C et al (2011) The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: a 6-month randomized, controlled trial. J Bone Miner Res 26(1):42–49. doi:10.1002/jbmr.181

    Article  CAS  PubMed  Google Scholar 

  7. Beck BR, Norling TL (2010) The effect of 8 mos of twice-weekly low- or higher intensity whole body vibration on risk factors for postmenopausal hip fracture. Am J Phys Med Rehabil 89(12):997–1009. doi:10.1097/PHM.0b013e3181f71063

    Article  PubMed  Google Scholar 

  8. Gusi N, Raimundo A, Leal A (2006) Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC Musculoskelet Disord 7:92

    Article  PubMed Central  PubMed  Google Scholar 

  9. Iwamoto J, Takeda T, Sato Y, Uzawa M (2005) Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate. Aging Clin Exp Res 17(2):157–163

    Article  CAS  PubMed  Google Scholar 

  10. Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S (2004) Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 19(3):352–359

    Article  PubMed  Google Scholar 

  11. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K (2004) Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 19(3):343–351

    Article  PubMed  Google Scholar 

  12. Slatkovska L, Alibhai SM, Beyene J, Hu H, Demaras A, Cheung AM (2011) Effect of 12 months of whole-body vibration therapy on bone density and structure in postmenopausal women: a randomized trial. Ann Intern Med 155(10):668–679, W205. Erratum in: Ann Intern Med. 2011 Dec 20;155(12):860. doi: 10.7326/0003-4819-155-10-201111150-00005

  13. Russo CR, Lauretani F, Bandinelli S, Bartali B, Cavazzini C, Guralnik JM, Ferrucci L (2003) High-frequency vibration training increases muscle power in postmenopausal women. Arch Phys Med Rehabil 84(12):1854–1857

    Article  PubMed  Google Scholar 

  14. Flieger J, Karachalios T, Khaldi L, Raptou P, Lyritis G (1998) Mechanical stimulation in the form of vibration prevents postmenopausal bone loss in ovariectomized rats. Calcif Tissue Int 63(6):510–514

    Article  CAS  PubMed  Google Scholar 

  15. Judex S, Donahue LR, Rubin C (2002) Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton. FASEB J 16(10):1280–1282

    CAS  PubMed  Google Scholar 

  16. Rauch F, Sievanen H, Boonen S et al (2010) Reporting whole-body vibration intervention studies: recommendations of the International Society of Musculoskeletal and Neuronal Interactions. J Musculoskelet Neuronal Interact 10(3):193–198

    CAS  PubMed  Google Scholar 

  17. Garman R, Gaudette G, Donahue LR, Rubin C, Judex S (2007) Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J Orthop Res 25(6):732–740

    Article  PubMed  Google Scholar 

  18. Judex S, Lei X, Han D, Rubin C (2007) Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech 40(6):1333–1339

    Article  PubMed  Google Scholar 

  19. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412(6847):603–604

    Article  CAS  PubMed  Google Scholar 

  20. Griffin MJ (1998) Predicting the hazards of whole-body vibration—considerations of a standard. Ind Health 36(2):83–91

    Article  CAS  PubMed  Google Scholar 

  21. Hung A, Hamidi M, Riazantseva E, Thompson L, Tile L, Tomlinson G, Stewart B, Cheung AM (2011) Validation of a calcium assessment tool in postmenopausal Canadian women. Maturitas 69(2):168–172. doi:10.1016/j.maturitas.2011.02.016

    Article  CAS  PubMed  Google Scholar 

  22. Rubin C, Turner AS, Mallinckrodt C, Jerome C, McLeod K, Bain S (2002) Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30(3):445–452

    Article  CAS  PubMed  Google Scholar 

  23. Rubin C, Judex S, Qin YX (2006) Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis. Age Ageing 35(Suppl 2):ii32–ii36

    PubMed  Google Scholar 

  24. Krieg MA, Barkmann R, Gonnelli S et al (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 11(1):163–187. doi:10.1016/j.jocd.2007

    Article  PubMed  Google Scholar 

  25. Common Terminology Criteria for Adverse Events, Version 3.0 (2006) Cancer Therapy Evaluation Program. http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf. Accessed 15 Sept 2006

  26. Wilson HW (1997) Minnesota leisure-time physical activity questionnaire. Med Sci Sports Exerc 29:S62–S72

    Google Scholar 

  27. Rubin DB (1996) Multiple imputation After 18+ years. J Am Statist Assoc 91:473–489

    Article  Google Scholar 

  28. Hans D, Genton L, Allaoua S, Pichard C, Slosman DO (2003) Hip fracture discrimination study: QUS of the radius and the calcaneum. J Clin Densitom 6(2):163–172

    Article  PubMed  Google Scholar 

  29. Prisby RD, Lafage-Proust MH, Malaval L, Belli A, Vico L (2008) Effects of whole body vibration on the skeleton and other organ systems in man and animal models: what we know and what we need to know. Ageing Res Rev 7(4):319–329. doi:10.1016/j.arr.2008.07.004

    Article  PubMed  Google Scholar 

  30. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z (2004) Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 19(3):360–369

    Article  PubMed  Google Scholar 

  31. Haïat G, Padilla F, Peyrin F, Laugier P (2007) Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation. J Bone Miner Res 22(5):665–674

    Article  PubMed  Google Scholar 

  32. Njeh CF, Fuerst T, Diessel E, Genant HK (2001) Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int 12(1):1–15

    CAS  PubMed  Google Scholar 

  33. Lin W, Xia Y, Qin YX (2009) Characterization of the trabecular bone structure using frequency modulated ultrasound pulse. J Acoust Soc Am 125(6):4071–4077. doi:10.1121/1.3126993

    Article  PubMed  Google Scholar 

  34. Ma R, Zhu D, Gong H et al (2012) High-frequency and low-magnitude whole body vibration with rest days is more effective in improving skeletal micro-morphology and biomechanical properties in ovariectomised rodents. Hip Int 22(2):218–226. doi:10.5301/HIP.2012.9033

    Article  PubMed  Google Scholar 

  35. Rapillard L, Charlebois M, Zysset PK (2006) Compressive fatigue behavior of human vertebral trabecular bone. J Biomech 39(11):2133–2139

    Article  PubMed  Google Scholar 

  36. Judex S, Rubin CT (2010) Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? J Musculoskelet Neuronal Interact 10(1):3–11

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, Rubin CT (2010) Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol 6(1):50–59. doi:10.1038/nrrheum.2009.239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Reid IR (2006) Menopause. In: Favus MJ (ed) Primer on the Metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, DC

    Google Scholar 

  39. Lewiecki EM, Richmond B, Miller PD (2006) Uses and misuses of quantitative ultrasonography in managing osteoporosis. Cleve Clin J Med 73(8):742–766, 749–752

  40. Chappard C, Camus E, Lefebvre F, Guillot G, Bittoun J, Berger G, Laugier P (2000) Evaluation of error bounds on calcaneal speed of sound caused by surrounding soft tissue. J Clin Densitom 3(2):121–131

    Article  CAS  PubMed  Google Scholar 

  41. Ikeda Y, Iki M (2004) Precision control and seasonal variations in quantitative ultrasound measurement of the calcaneus. J Bone Miner Metab 22(6):588–593

    Article  PubMed  Google Scholar 

  42. Sakakibara H, Hashiguchi T, Furuta M, Kondo T, Miyao M, Yamada S (1991) Circulatory disturbances of the foot in vibration syndrome. Int Arch Occup Environ Health 63(2):145–148

    Article  CAS  PubMed  Google Scholar 

  43. Thompson AM, House R, Krajnak K, Eger T (2010) Vibration-white foot: a case report. Occup Med (Lond) 60(7):572–574

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the women who volunteered their time and participated in this trial. We also thank OsTek Orthopaedics Inc. for their assistance in obtaining the platforms. In addition, we thank Alice Demaras, Diana Yau, Claudia Chan, Gail Jefferson, and Farrah Ahmed and our research volunteers and work-study students who helped with various aspects of the study.

Conflicts of Interest

Please note that Lubomira Slatkovska, Joseph Beyene, Shabbir M. H. Alibhai, Queenie Wong, Qazi Z. Sohail, and Angela M. Cheung declare that they have no conflicts of interest. All authors made substantial contributions to the intellectual content of the paper. A peer-reviewed grant from the Physicians’ Services Incorporated Foundation funded this trial. Juvent Inc. supplied the WBV platforms and Jamieson Laboratories provided calcium and vitamin D supplements. None of these sources were involved in the study design, conduct, analysis, interpretation of the data, preparation of this manuscript, or decision to submit the manuscript for publication.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. Cheung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slatkovska, L., Beyene, J., Alibhai, S.M.H. et al. Effect of Whole-Body Vibration on Calcaneal Quantitative Ultrasound Measurements in Postmenopausal Women: A Randomized Controlled Trial. Calcif Tissue Int 95, 547–556 (2014). https://doi.org/10.1007/s00223-014-9920-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9920-1

Keywords

Navigation