Skip to main content
Log in

Measuring muscle and bone in individuals with neurologic impairment; lessons learned about participant selection and pQCT scan acquisition and analysis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Peripheral quantitative computed tomography (pQCT) can be used to examine bone strength outcomes and muscle size and fatty infiltration. Our research team and others have used it to examine bone loss after spinal cord injury (SCI). However, the high prevalence of restricted lower extremity range of motion, spasticity, edema, excessive muscle atrophy, or severe osteoporosis necessitates changes to standard protocols for screening, positioning during scan acquisition, and analysis methods. This manuscript outlines the challenges that we experienced using pQCT in individuals with SCI, and provides solutions, ones that may also be applicable when using pQCT in individuals with other chronic conditions or in older adults. Suggestions for participant screening, positioning individuals for scanning while in a wheelchair, scan site selection, need for attendant assistance, and considerations in the presence of secondary complications, such as contracture, spasticity, and paralysis, are presented. In the presence of very low bone mineral density or severe muscle atrophy, the default analysis modes provided by the manufacturer may not provide valid estimates of bone or muscle indices; we propose alternates. We have used watershed segmentation methods to determine muscle size and density based on lower precision error compared to threshold-based edge-detection segmentation, particularly for adults with SCI, where more fatty infiltration was present. By presenting our “lessons learned,” we hope to reduce the learning curve for researchers using pQCT in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giangregorio LM, McCartney N (2007) Reduced loading due to spinal-cord injury at birth results in “slender” bones: a case study. Osteoporos Int: A Journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 18(1):117–120. doi:10.1007/s00198-006-0201-3

    Article  CAS  Google Scholar 

  2. Gorgey AS, Dudley GA (2007) Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord 45(4):304–309. doi:10.1038/sj.sc.3101968

    CAS  PubMed  Google Scholar 

  3. Shah PK, Stevens JE, Gregory CM, Pathare NC, Jayaraman A, Bickel SC, Bowden M, Behrman AL, Walter GA, Dudley GA, Vandenborne K (2006) Lower-extremity muscle cross-sectional area after incomplete spinal cord injury. Arch Phys Med Rehabil 87(6):772–778. doi:10.1016/j.apmr.2006.02.028

    Article  PubMed  Google Scholar 

  4. Moore CD, Craven BC, Thabane L, Laing AC, Frank-Wilson AW, Kontulainen SA, Papaioannou A, Adachi JD, Giangregorio LM (2015) Lower-extremity muscle atrophy and fat infiltration after chronic spinal cord injury. J Musculoskelet Neuronal Interact 15(1):32–41

    CAS  PubMed  Google Scholar 

  5. Frey-Rindova P, de Bruin ED, Stussi E, Dambacher MA, Dietz V (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38(1):26–32

    Article  CAS  PubMed  Google Scholar 

  6. de Bruin ED, Vanwanseele B, Dambacher MA, Dietz V, Stussi E (2005) Long-term changes in the tibia and radius bone mineral density following spinal cord injury. Spinal Cord 43(2):96–101. doi:10.1038/sj.sc.3101685

    Article  PubMed  Google Scholar 

  7. de Bruin ED, Dietz V, Dambacher MA, Stussi E (2000) Longitudinal changes in bone in men with spinal cord injury. Clin Rehabil 14(2):145–152

    Article  PubMed  Google Scholar 

  8. de Bruin ED, Herzog R, Rozendal RH, Michel D, Stussi E (2000) Estimation of geometric properties of cortical bone in spinal cord injury. Arch Phys Med Rehabil 81(2):150–156

    Article  PubMed  Google Scholar 

  9. Dionyssiotis Y, Trovas G, Galanos A, Raptou P, Papaioannou N, Papagelopoulos P, Petropoulou K, Lyritis GP (2007) Bone loss and mechanical properties of tibia in spinal cord injured men. J Musculoskelet Neuronal Interact 7(1):62–68

    CAS  PubMed  Google Scholar 

  10. Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J, Schiessl H (2004) Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 34(5):869–880. doi:10.1016/j.bone.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  11. Eser P, Frotzler A, Zehnder Y, Denoth J (2005) Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil 86(3):498–504. doi:10.1016/j.apmr.2004.09.006

    Article  PubMed  Google Scholar 

  12. Frotzler A, Berger M, Knecht H, Eser P (2008) Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT). Bone 43(3):549–555. doi:10.1016/j.bone.2008.05.006

    Article  PubMed  Google Scholar 

  13. Lala D, Craven BC, Thabane L, Papaioannou A, Adachi JD, Popovic MR, Giangregorio LM (2014) Exploring the determinants of fracture risk among individuals with spinal cord injury. Osteoporos Int: A Journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 25(1):177–185. doi:10.1007/s00198-013-2419-1

    Article  CAS  Google Scholar 

  14. McCarthy ID, Bloomer Z, Gall A, Keen R, Ferguson-Pell M (2012) Changes in the structural and material properties of the tibia in patients with spinal cord injury. Spinal Cord 50(4):333–337. doi:10.1038/sc.2011.143

    Article  CAS  PubMed  Google Scholar 

  15. Totosy de Zepetnek JO, Craven BC, Giangregorio LM (2012) An evaluation of the muscle-bone unit theory among individuals with chronic spinal cord injury. Spinal Cord 50(2):147–152. doi:10.1038/sc.2011.99

    Article  CAS  PubMed  Google Scholar 

  16. Coupaud S, McLean AN, Allan DB (2009) Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia. Skelet Radiol 38(10):989–995. doi:10.1007/s00256-009-0674-1

    Article  Google Scholar 

  17. Coupaud S, McLean AN, Lloyd S, Allan DB (2012) Predicting patient-specific rates of bone loss at fracture-prone sites after spinal cord injury. Disabil Rehabil 34(26):2242–2250. doi:10.3109/09638288.2012.681831

    Article  CAS  PubMed  Google Scholar 

  18. Coupaud S, McLean AN, Purcell M, Fraser MH, Allan DB (2015) Decreases in bone mineral density at cortical and trabecular sites in the tibia and femur during the first year of spinal cord injury. Bone 74:69–75. doi:10.1016/j.bone.2015.01.005

    Article  PubMed  Google Scholar 

  19. Varzi D, Coupaud SA, Purcell M, Allan DB, Gregory JS, Barr RJ (2015) Bone morphology of the femur and tibia captured by statistical shape modelling predicts rapid bone loss in acute spinal cord injury patients. Bone 81:495–501. doi:10.1016/j.bone.2015.08.026

    Article  PubMed  Google Scholar 

  20. Dudley-Javoroski S, Shields RK (2010) Longitudinal changes in femur bone mineral density after spinal cord injury: effects of slice placement and peel method. Osteoporos Int: A Journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 21(6):985–995. doi:10.1007/s00198-009-1044-5

    Article  CAS  Google Scholar 

  21. Dudley-Javoroski S, Shields RK (2012) Regional cortical and trabecular bone loss after spinal cord injury. J Rehabil Res Dev 49(9):1365–1376

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rittweger J, Goosey-Tolfrey VL, Cointry G, Ferretti JL (2010) Structural analysis of the human tibia in men with spinal cord injury by tomographic (pQCT) serial scans. Bone 47(3):511–518. doi:10.1016/j.bone.2010.05.025

    Article  PubMed  Google Scholar 

  23. Dionyssiotis Y, Stathopoulos K, Trovas G, Papaioannou N, Skarantavos G, Papagelopoulos P (2015) Impact on bone and muscle area after spinal cord injury. BoneKEy Rep 4:633. doi:10.1038/bonekey.2014.128

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gibbs JC, Craven BC, Moore C, Thabane L, Adachi JD, Giangregorio LM (2015) Muscle density and bone quality of the distal lower extremity among individuals with chronic spinal cord injury. Top Spinal Cord Inj Rehabil 21(4):282–293

    Article  PubMed  Google Scholar 

  25. Craven BC, Zeng L, Farahani F, Hitzig SL Is self-report of neurological impairment among persons living with chronic spinal cord injury sufficiently accurate for research studies? In: CAPM&R 62nd Annual Scientific Meeting, Sheraton Hotel Newfoundland, 2014. vol 10. Journal of Rehabilitation Medicine, St. John’s Newfoundland, p 1060

  26. Pandyan AD, Gregoric M, Barnes MP, Wood D, Van Wijck F, Burridge J, Hermens H, Johnson GR (2005) Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil 27(1–2):2–6

    Article  CAS  PubMed  Google Scholar 

  27. Penn RD, Savoy SM, Corcos D, Latash M, Gottlieb G, Parke B, Kroin JS (1989) Intrathecal baclofen for severe spinal spasticity. N Engl J Med 320(23):1517–1521. doi:10.1056/NEJM198906083202303

    Article  CAS  PubMed  Google Scholar 

  28. Royal College of Radiologists (2003) Safe sedation, analgesia, and anaesthesia within. Radiology Departments, London

    Google Scholar 

  29. Blew RM, Lee VR, Farr JN, Schiferl DJ, Going SB (2014) Standardizing evaluation of pQCT image quality in the presence of subject movement: qualitative versus quantitative assessment. Calcif Tissue Int 94(2):202–211. doi:10.1007/s00223-013-9803-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giangregorio L, Lala D, Hummel K, Gordon C, Craven BC (2013) Measuring apparent trabecular density and bone structure using peripheral quantitative computed tomography at the tibia: precision in participants with and without spinal cord injury. J Clin Densitom: Off J Int Soc Clin Densitom 16(2):139–146. doi:10.1016/j.jocd.2012.02.003

    Article  Google Scholar 

  31. Shepherd JA, Schousboe JT, Broy SB, Engelke K, Leslie WD (2015) Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J Clin Densitom: Off J Int Soc Clin Densitom 18(3):274–286. doi:10.1016/j.jocd.2015.06.013

    Article  Google Scholar 

  32. Ashe MC, Khan KM, Kontulainen SA, Guy P, Liu D, Beck TJ, McKay HA (2006) Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int: A Journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 17(8):1241–1251. doi:10.1007/s00198-006-0110-5

    Article  CAS  Google Scholar 

  33. Wong AK, Hummel K, Moore C, Beattie KA, Shaker S, Craven BC, Adachi JD, Papaioannou A, Giangregorio L (2015) Improving reliability of pQCT-derived muscle area and density measures using a watershed algorithm for muscle and fat segmentation. J Clin Densitom: Off J Int Soc Clin Densitom. doi:10.1016/j.jocd.2014.04.124

    Google Scholar 

  34. Fu G, Hojjat SA, Colchester AC (2004) Integrating watersheds and critical point analysis for object detection in discrete 2D images. Med Image Anal 8(3):177–185. doi:10.1016/j.media.2004.06.002

    Article  PubMed  Google Scholar 

  35. Miljkovic-Gacic I, Gordon CL, Goodpaster BH, Bunker CH, Patrick AL, Kuller LH, Wheeler VW, Evans RW, Zmuda JM (2008) Adipose tissue infiltration in skeletal muscle: age patterns and association with diabetes among men of African ancestry. Am J Clin Nutr 87(6):1590–1595

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Butner KL, Creamer KW, Nickols-Richardson SM, Clark SF, Ramp WK, Herbert WG (2012) Fat and muscle indices assessed by pQCT: relationships with physical activity and type 2 diabetes risk. J Clin Densitom: Off J Int Soc Clin Densitom 15(3):355–361. doi:10.1016/j.jocd.2012.01.012

    Article  Google Scholar 

Download references

Acknowledgments

The present work was prepared independent of any input from the manufacturer of the pQCT device described here. The authors acknowledge the support from the Ontario Neurotrauma Foundation (grant no. 2009-SC-MA-684), the Canadian Institutes of Health Research (CIHR, grant no. 86521), the Spinal Cord Injury Solutions Network (RHI; grant no. 2010-43), the Canadian Foundation for Innovation, University Health Network Rehabilitation Medicine Associates and Ontario Research Fund. Dr. Giangregorio is a CIHR New Investigator, recipient of an Early Researcher Award from the Ontario Ministry of Research and Innovation, and recipient of the Bloomberg Manulife Prize for the Promotion of Active Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Giangregorio.

Ethics declarations

Conflicts of interest

Dr. Giangregorio has received research funding from Merck Canada and ICON, unrelated to the work presented here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giangregorio, L.M., Gibbs, J.C. & Craven, B.C. Measuring muscle and bone in individuals with neurologic impairment; lessons learned about participant selection and pQCT scan acquisition and analysis. Osteoporos Int 27, 2433–2446 (2016). https://doi.org/10.1007/s00198-016-3572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3572-0

Keywords

Navigation