Skip to main content

Advertisement

Log in

Mouse Knockout Models for Pelvic Organ Prolapse: a Systematic Review

  • Review Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

Mouse knockout (KO) models of pelvic organ prolapse (POP) have contributed mechanistic evidence for the role of connective tissue defects, specifically impaired elastic matrix remodeling. Our objective was to summarize what mouse KO models for POP are available and what have we learned from these mouse models about the pathophysiological mechanisms of POP development.

Methods

We conducted a systematic review and reported narrative findings according to PRISMA guidelines. Two independent reviewers searched PubMed, Scopus and Embase for relevant manuscripts and conference abstracts for the time frame of January 1, 2000, to March 31, 2021. Conference abstracts were limited to the past 5 years.

Results

The search strategy resulted in 294 total titles. We ultimately included 25 articles and an additional 11 conference abstracts. Five KO models have been studied: Loxl1, Fbln5, Fbln3, Hoxa11 and Upii-sv40t. Loxl1 and Fbln5 KO models have provided the most reliable and predictable POP phenotype. Loxl1 KO mice develop POP primarily from failure to heal after giving birth, whereas Fbln5 KO mice develop POP with aging. These mouse KO models have been used for a wide variety of investigations including genetic pathways involved in development of POP, biomechanical properties of the pelvic floor, elastic fiber deposition, POP therapies and the pathophysiology associated with mesh complications.

Conclusions

Mouse KO models have proved to be a valuable tool in the study of specific genes and their role in the development and progression of POP. They may be useful to study POP treatments and POP complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haylen BT, Maher CF, Barber MD, Camargo S, Dandolu V, Digesu A, Goldman HB, Huser M, Milani AL, Moran PA, Schaer GN, Withagen MI. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic organ prolapse (POP). Int Urogynecol J. 2016;27(2):165–94. https://doi.org/10.1007/s00192-015-2932-1.

    Article  PubMed  Google Scholar 

  2. Barber MD. Pelvic organ prolapse. BMJ. 2016;354: i3853. https://doi.org/10.1136/bmj.i3853.

    Article  PubMed  Google Scholar 

  3. Wu JM, Matthews CA, Conover MM, Pate V, Jonsson Funk M. Lifetime risk of stress urinary incontinence or pelvic organ prolapse surgery. Obstet Gynecol. 2014;123(6):1201–6. https://doi.org/10.1097/AOG.0000000000000286.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Smith FJ, Holman CD, Moorin RE, Tsokos N. Lifetime risk of undergoing surgery for pelvic organ prolapse. Obstet Gynecol. 2010;116(5):1096–100. https://doi.org/10.1097/AOG.0b013e3181f73729.

    Article  PubMed  Google Scholar 

  5. Jelovsek JE, Barber MD. Women seeking treatment for advanced pelvic organ prolapse have decreased body image and quality of life. Am J Obstet Gynecol. 2006;194(5):1455–61. https://doi.org/10.1016/j.ajog.2006.01.060.

    Article  PubMed  Google Scholar 

  6. Cattani L, Decoene J, Page AS, Weeg N, Deprest J, Dietz HP. Pregnancy, labour and delivery as risk factors for pelvic organ prolapse: a systematic review. Int Urogynecol J. 2021. https://doi.org/10.1007/s00192-021-04724-y.

    Article  PubMed  Google Scholar 

  7. Uustal Fornell E, Wingren G, Kjolhede P. Factors associated with pelvic floor dysfunction with emphasis on urinary and fecal incontinence and genital prolapse: an epidemiological study. Acta Obstet Gynecol Scand. 2004;83(4):383–9. https://doi.org/10.1111/j.0001-6349.2004.00367.x.

    Article  PubMed  Google Scholar 

  8. Allen-Brady K, Chua JWF, Cuffolo R, Koch M, Sorrentino F, Cartwright R. Systematic review and meta-analysis of genetic association studies of pelvic organ prolapse. Int Urogynecol J. 2021. https://doi.org/10.1007/s00192-021-04782-2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim S, Harvey MA, Johnston S. A review of the epidemiology and pathophysiology of pelvic floor dysfunction: do racial differences matter? J Obstet Gynaecol Can. 2005;27(3):251–9. https://doi.org/10.1016/s1701-2163(16)30518-7.

    Article  CAS  PubMed  Google Scholar 

  10. Weintraub AY, Glinter H, Marcus-Braun N. Narrative review of the epidemiology, diagnosis and pathophysiology of pelvic organ prolapse. Int Braz J Urol. 2020;46(1):5–14. https://doi.org/10.1590/S1677-5538.IBJU.2018.0581.

    Article  PubMed  PubMed Central  Google Scholar 

  11. DeLancey JO. Anatomy and biomechanics of genital prolapse. Clin Obstet Gynecol. 1993;36(4):897–909. https://doi.org/10.1097/00003081-199312000-00015.

    Article  CAS  PubMed  Google Scholar 

  12. Jackson SR, Avery NC, Tarlton JF, Eckford SD, Abrams P, Bailey AJ. Changes in metabolism of collagen in genitourinary prolapse. Lancet. 1996;347(9016):1658–61. https://doi.org/10.1016/s0140-6736(96)91489-0.

    Article  CAS  PubMed  Google Scholar 

  13. Moalli PA, Shand SH, Zyczynski HM, Gordy SC, Meyn LA. Remodeling of vaginal connective tissue in patients with prolapse. Obstet Gynecol. 2005;106(5 Pt 1):953–63. https://doi.org/10.1097/01.AOG.0000182584.15087.dd.

    Article  PubMed  Google Scholar 

  14. Alarab M, Bortolini MA, Drutz H, Lye S, Shynlova O. LOX family enzymes expression in vaginal tissue of premenopausal women with severe pelvic organ prolapse. Int Urogynecol J. 2010;21(11):1397–404. https://doi.org/10.1007/s00192-010-1199-9.

    Article  PubMed  Google Scholar 

  15. Bortolini MA, Shynlova O, Drutz HP, Girao MJ, Castro RA, Lye S, Alarab M. Expression of Bone Morphogenetic Protein-1 in vaginal tissue of women with severe pelvic organ prolapse. Am J Obstet Gynecol. 2011;204(6):544 e541-548. https://doi.org/10.1016/j.ajog.2011.01.021.

    Article  CAS  Google Scholar 

  16. Chen B, Wen Y, Polan ML. Elastolytic activity in women with stress urinary incontinence and pelvic organ prolapse. Neurourol Urodyn. 2004;23(2):119–26. https://doi.org/10.1002/nau.20012.

    Article  PubMed  Google Scholar 

  17. Kow N, Ridgeway B, Kuang M, Butler RS, Damaser MS. Vaginal Expression of LOXL1 in Premenopausal and Postmenopausal Women With Pelvic Organ Prolapse. Female Pelvic Med Reconstr Surg. 2016;22(4):229–35. https://doi.org/10.1097/SPV.0000000000000251.

    Article  PubMed  Google Scholar 

  18. Aboseif C, Liu P. Pelvic Organ Prolapse. Treasure Island: StatPearls; 2021.

    Google Scholar 

  19. Li Y, Zhang QY, Sun BF, Ma Y, Zhang Y, Wang M, Ma C, Shi H, Sun Z, Chen J, Yang YG, Zhu L. Single-cell transcriptome profiling of the vaginal wall in women with severe anterior vaginal prolapse. Nat Commun. 2021;12(1):87. https://doi.org/10.1038/s41467-020-20358-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kerkhof MH, Hendriks L, Brolmann HA. Changes in connective tissue in patients with pelvic organ prolapse–a review of the current literature. Int Urogynecol J Pelvic Floor Dysfunct. 2009;20(4):461–74. https://doi.org/10.1007/s00192-008-0737-1.

    Article  CAS  PubMed  Google Scholar 

  21. Norton PA, Baker JE, Sharp HC, Warenski JC. Genitourinary prolapse and joint hypermobility in women. Obstet Gynecol. 1995;85(2):225–8. https://doi.org/10.1016/0029-7844(94)00386-R.

    Article  CAS  PubMed  Google Scholar 

  22. Al-R ZS, Al-Rawi ZT. Joint hypermobility in women with genital prolapse. Lancet. 1982;1(8287):1439–41. https://doi.org/10.1016/s0140-6736(82)92453-9.

    Article  Google Scholar 

  23. Hansell NK, Dietz HP, Treloar SA, Clarke B, Martin NG. Genetic covariation of pelvic organ and elbow mobility in twins and their sisters. Twin Res. 2004;7(3):254–60. https://doi.org/10.1375/136905204774200532.

    Article  PubMed  Google Scholar 

  24. Carley ME, Schaffer J. Urinary incontinence and pelvic organ prolapse in women with Marfan or Ehlers Danlos syndrome. Am J Obstet Gynecol. 2000;182(5):1021–3. https://doi.org/10.1067/mob.2000.105410.

    Article  CAS  PubMed  Google Scholar 

  25. Allen-Brady K, Norton PA, Hill AJ, Rowe K, Cannon-Albright LA. Risk of pelvic organ prolapse treatment based on extended family history. Am J Obstet Gynecol. 2020;223(1):105 e101-105 e108. https://doi.org/10.1016/j.ajog.2019.12.271.

    Article  Google Scholar 

  26. Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li T. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet. 2004;36(2):178–82. https://doi.org/10.1038/ng1297.

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Zhao Y, Pawlyk B, Damaser M, Li T. Failure of elastic fiber homeostasis leads to pelvic floor disorders. Am J Pathol. 2006;168(2):519–28. https://doi.org/10.2353/ajpath.2006.050399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nikolova G, Lee H, Berkovitz S, Nelson S, Sinsheimer J, Vilain E, Rodriguez LV. Sequence variant in the laminin gamma1 (LAMC1) gene associated with familial pelvic organ prolapse. Hum Genet. 2007;120(6):847–56. https://doi.org/10.1007/s00439-006-0267-1.

    Article  CAS  PubMed  Google Scholar 

  29. Couri BM, Lenis AT, Borazjani A, Paraiso MF, Damaser MS. Animal models of female pelvic organ prolapse: lessons learned. Expert Rev Obstet Gynecol. 2012;7(3):249–60. https://doi.org/10.1586/eog.12.24.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Connell KA. Elastogenesis in the vaginal wall and pelvic-organ prolapse. N Engl J Med. 2011;364(24):2356–8. https://doi.org/10.1056/NEJMcibr1104976.

    Article  CAS  PubMed  Google Scholar 

  31. Greene AG, Eivers SB, Dervan EWJ, O’Brien CJ, Wallace DM. Lysyl Oxidase Like 1: Biological roles and regulation. Exp Eye Res. 2020;193: 107975. https://doi.org/10.1016/j.exer.2020.107975.

    Article  CAS  PubMed  Google Scholar 

  32. Shin SJ, Yanagisawa H. Recent updates on the molecular network of elastic fiber formation. Essays Biochem. 2019;63(3):365–76. https://doi.org/10.1042/EBC20180052.

    Article  CAS  PubMed  Google Scholar 

  33. Mecham RP. Elastin synthesis and fiber assembly. Ann N Y Acad Sci. 1991;624:137–46. https://doi.org/10.1111/j.1749-6632.1991.tb17013.x.

    Article  CAS  PubMed  Google Scholar 

  34. Lee UJ, Gustilo-Ashby AM, Daneshgari F, Kuang M, Vurbic D, Dan LL, Flask CA, Li T, Damaser MS. Lower urogenital tract anatomical and functional phenotype in lysyl oxidase like-1 knockout mice resembles female pelvic floor dysfunction in humans. Am J Physiol Renal Physiol. 2008;295(2):F545–55. https://doi.org/10.1152/ajprenal.00063.2008.

    Article  CAS  PubMed  Google Scholar 

  35. Alperin M, Debes K, Abramowitch S, Meyn L, Moalli PA. LOXL1 deficiency negatively impacts the biomechanical properties of the mouse vagina and supportive tissues. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19(7):977–86. https://doi.org/10.1007/s00192-008-0561-7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ferreira JPS, Kuang M, Parente MPL, Natal Jorge RM, Wang R, Eppell SJ, Damaser M. Altered mechanics of vaginal smooth muscle cells due to the lysyl oxidase-like1 knockout. Acta Biomater. 2020;110:175–87. https://doi.org/10.1016/j.actbio.2020.03.046.

    Article  CAS  PubMed  Google Scholar 

  37. Jameson SA, Swaminathan G, Dahal S, Couri B, Kuang M, Rietsch A, Butler RS, Ramamurthi A, Damaser MS. Elastin homeostasis is altered with pelvic organ prolapse in cultures of vaginal cells from a lysyl oxidase-like 1 knockout mouse model. Physiol Rep. 2020;8(11): e14436. https://doi.org/10.14814/phy2.14436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dahal S, Kuang M, Rietsch A, Butler RS, Ramamurthi A, Damaser MS. Quantitative Morphometry of Elastic Fibers in Pelvic Organ Prolapse. Ann Biomed Eng. 2021. https://doi.org/10.1007/s10439-021-02760-9.

    Article  PubMed  Google Scholar 

  39. Couri BM, Lenis AT, Borazjani A, Balog BM, Kuang M, Butler RS, Penn MS, Damaser MS. Effect of Pregnancy and Delivery on Cytokine Expression in a Mouse Model of Pelvic Organ Prolapse. Female Pelvic Med Reconstr Surg. 2017;23(6):449–56. https://doi.org/10.1097/SPV.0000000000000394.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Borazjani A, Pizarro-Berdichevsky J, Goldman HB, Damaser M. Risk for pelvic organ prolapse is significantly increased with successive increases in parity in both mice and women. Female Pelvic Med Reconstr Surg. 2016;22(5):S36. https://doi.org/10.1097/SPV.0000000000000330.

    Article  Google Scholar 

  41. Borazjani A, Pizarro-Berdichevsky J, Goldman HB, Damaser MS. Successive increases in parity confer a significant increased in risk for pelvic organ prolapse in mice and women. Int Urogynecol J Pelvic Floor Dysfunct. 2016;27(1):S98–9. https://doi.org/10.1007/s00192-016-3042-4.

    Article  Google Scholar 

  42. Couri BM, Borazjani A, Lenis AT, Balog B, Kuang M, Lin DL, Damaser MS. Validation of genetically matched wild-type strain and lysyl oxidase-like 1 knockout mouse model of pelvic organ prolapse. Female Pelvic Med Reconstr Surg. 2014;20(5):287–92. https://doi.org/10.1097/SPV.0000000000000104.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gustilo-Ashby AM, Lee U, Vurbic D, Sypert D, Kuang M, Daneshgari F, Barber MD, Damaser MS. The impact of cesarean delivery on pelvic floor dysfunction in lysyl oxidase like-1 knockout mice. Female Pelvic Med Reconstr Surg. 2010;16(1):21–30. https://doi.org/10.1097/SPV.0b013e3181d00035.

    Article  PubMed  Google Scholar 

  44. Borazjani A, Couri BM, Kuang M, Balog BM, Damaser MS. Role of lysyl oxidase like 1 in regulation of postpartum connective tissue metabolism in the mouse vaginadagger. Biol Reprod. 2019;101(5):916–27. https://doi.org/10.1093/biolre/ioz148.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Borazjani A, Couri BM, Kuang M, Balog B, Damaser M. Parity induces abberant relationships between bone morphogenic protein 1 and extracellular matrix synthesis proteins in a mouse model of female pelvic floor disorders. Neurourol Urodyn. 2014;33(6):909. https://doi.org/10.1002/nau.22655.

    Article  Google Scholar 

  46. Liu G, Daneshgari F, Li M, Lin D, Lee U, Li T, Damaser MS. Bladder and urethral function in pelvic organ prolapsed lysyl oxidase like-1 knockout mice. BJU Int. 2007;100(2):414–8. https://doi.org/10.1111/j.1464-410X.2007.06929.x.

    Article  PubMed  Google Scholar 

  47. Venkataraman L, Lenis AT, Couri BM, Damaser MS, Ramamurthi A. Induced Regenerative Elastic Matrix Repair in LOXL1 Knockout Mouse Cell Cultures: Towards Potential therapy for Pelvic Organ Prolapse. J Tissue Sci Eng. 2012; 3(3). https://doi.org/10.4172/2157-7552.1000120

  48. Bretschneider CE, Kuang M, Borazjani A, Rietsch A, Ridgeway BM, Damaser MS. Mesh reduces elasticity in an animal model of pelvic organ prolapse. Female Pelvic Med Reconstr Surg. 2019;25(5):S204–5. https://doi.org/10.1097/SPV.0000000000000766.

    Article  Google Scholar 

  49. Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, Cheng CF, Kobuke K, Dalton N, Takada Y, Tashiro K, Ross J Jr, Honjo T, Chien KR. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature. 2002;415(6868):171–5. https://doi.org/10.1038/415171a.

    Article  CAS  PubMed  Google Scholar 

  50. Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA, Olson EN. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature. 2002;415(6868):168–71. https://doi.org/10.1038/415168a.

    Article  PubMed  Google Scholar 

  51. Yanagisawa H, Davis EC. Unraveling the mechanism of elastic fiber assembly: The roles of short fibulins. Int J Biochem Cell Biol. 2010;42(7):1084–93. https://doi.org/10.1016/j.biocel.2010.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nguyen AD, Itoh S, Jeney V, Yanagisawa H, Fujimoto M, Ushio-Fukai M, Fukai T. Fibulin-5 is a novel binding protein for extracellular superoxide dismutase. Circ Res. 2004;95(11):1067–74. https://doi.org/10.1161/01.RES.0000149568.85071.FB.

    Article  CAS  PubMed  Google Scholar 

  53. Budatha M, Roshanravan S, Zheng Q, Weislander C, Chapman SL, Davis EC, Starcher B, Word RA, Yanagisawa H. Extracellular matrix proteases contribute to progression of pelvic organ prolapse in mice and humans. J Clin Invest. 2011;121(5):2048–59. https://doi.org/10.1172/JCI45636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abulaizi A, Abula A, Ababaikeli G, Wan X, Du R, Zhakeer A. Identification of pelvic organ prolapse risk susceptibility gene SNP locus in Xinjiang women. Int Urogynecol J. 2020;31(1):123–30. https://doi.org/10.1007/s00192-019-04039-z.

  55. Khadzhieva MB, Kamoeva S, Chumachenko AG, Ivanova AV, Volodin IV, Vladimirov IS, Abilev SK, Salnikova LE. Fibulin-5 (FBLN5) gene polymorphism is associated with pelvic organ prolapse. Maturitas. 2014;78(4):287–92. https://doi.org/10.1016/j.maturitas.2014.05.003.

    Article  CAS  PubMed  Google Scholar 

  56. Paula MVB, Lira Junior MAF, Monteiro V, Souto RP, Fernandes CE. Oliveira E (2020) Evaluation of the fibulin 5 gene polymorphism as a factor related to the occurrence of pelvic organ prolapse. Rev Assoc Med Bras. 1992;66(5):680–6. https://doi.org/10.1590/1806-9282.66.5.680.

    Article  Google Scholar 

  57. Drewes PG, Yanagisawa H, Starcher B, Hornstra I, Csiszar K, Marinis SI, Keller P, Word RA. Pelvic organ prolapse in fibulin-5 knockout mice: pregnancy-induced changes in elastic fiber homeostasis in mouse vagina. Am J Pathol. 2007;170(2):578–89. https://doi.org/10.2353/ajpath.2007.060662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kitada K, Hayashi M, Takase A, Yokoi N, Katayama H, Hamuro A, Nakano A, Misugi T, Tachibana D, Koyama M. The Evaluation of Efficiency of CRISPR/Cas9 System in Generating Fibulin-5 Knockout Mice. J Obstet Gynaecol Res. 2018;44(8):1530. https://doi.org/10.1111//jog.13762.

    Article  Google Scholar 

  59. Uemura R, Tachibana D, Shiota M, Yoshida K, Kitada K, Hamuro A, Misugi T, Koyama M. Upregulation of PTK7 and β-catenin after vaginal mechanical dilatation: an examination of fibulin-5 knockout mice. Int Urogynecol J. 2021. https://doi.org/10.1007/s00192-021-04693-2.

    Article  PubMed  Google Scholar 

  60. Wieslander CK, Rahn DD, McIntire DD, Acevedo JF, Drewes PG, Yanagisawa H, Word RA. Quantification of pelvic organ prolapse in mice: vaginal protease activity precedes increased MOPQ scores in fibulin 5 knockout mice. Biol Reprod. 2009;80(3):407–14. https://doi.org/10.1095/biolreprod.108.072900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rahn DD, Ruff MD, Brown SA, Tibbals HF, Word RA. Biomechanical properties of the vaginal wall: effect of pregnancy, elastic fiber deficiency, and pelvic organ prolapse. Am J Obstet Gynecol. 2008;198(5):590 e591-596. https://doi.org/10.1016/j.ajog.2008.02.022.

    Article  Google Scholar 

  62. Clark G, Rothermel T, Shih E, Desrosiers L, Knoepp L, Alford P, Miller K. Role of fibulin 5 deficiency and prolapse on vaginal smooth muscle cells. Reprod Sci. 2020;27(1):215A. https://doi.org/10.1007/s43032-020-00176-9.

    Article  Google Scholar 

  63. Budatha M, Silva S, Montoya TI, Suzuki A, Shah-Simpson S, Wieslander CK, Yanagisawa M, Word RA, Yanagisawa H. Dysregulation of protease and protease inhibitors in a mouse model of human pelvic organ prolapse. PLoS ONE. 2013;8(2): e56376. https://doi.org/10.1371/journal.pone.0056376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Clark GL, Knoepp LR, Desrosiers L, Miller KS. The effect of Fibulin-5 haploinsufficiency on vaginal mechanical behavior using extension inflation testing. Interntational Urogynecology Journal 44th Annual Meeting of the American Urogynecologic Society and the International Urogynecological Association, AUGS-IUGA 2019. 2019;30:S260-S261

  65. Clark GL, Knoepp LR, Desrosiers L, Miller KS. The effect of Fibulin-5 haploinsufficiency on vaginal mechanical behavior using extension inflation testing. Female Pelvic Med Reconstr Surg. 2019;25:S222-223.

    Article  Google Scholar 

  66. Chin K, Wieslander C, Shi H, Balgobin S, Montoya TI, Yanagisawa H, Word RA. Pelvic Organ Support in Animals with Partial Loss of Fibulin-5 in the Vaginal Wall. PLoS ONE. 2016;11(4): e0152793. https://doi.org/10.1371/journal.pone.0152793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rahn DD, Acevedo JF, Word RA. Effect of vaginal distention on elastic fiber synthesis and matrix degradation in the vaginal wall: potential role in the pathogenesis of pelvic organ prolapse. Am J Physiol Regul Integr Comp Physiol. 2008;295(4):R1351-1358. https://doi.org/10.1152/ajpregu.90447.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hare AM, Gaddam NG, Shi H, Acevedo JF, Florian Rodriguez ME, Word RA. Impact of vaginal distention on cell senescence in an animal model of pelvic organ prolapse (POP). Female Pelvic Med Reconstr Surg. 2020;26(10 SUPPL 1):S16. https://doi.org/10.1097/SPV.0000000000000932.

    Article  Google Scholar 

  69. Argraves WS, Greene LM, Cooley MA, Gallagher WM. Fibulins: physiological and disease perspectives. EMBO Rep. 2003;4(12):1127–31. https://doi.org/10.1038/sj.embor.7400033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Timpl R, Sasaki T, Kostka G, Chu ML. Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol. 2003;4(6):479–89. https://doi.org/10.1038/nrm1130.

    Article  CAS  PubMed  Google Scholar 

  71. Kobayashi N, Kostka G, Garbe JH, Keene DR, Bachinger HP, Hanisch FG, Markova D, Tsuda T, Timpl R, Chu ML, Sasaki T. A comparative analysis of the fibulin protein family. Biochemical characterization, binding interactions, and tissue localization. J Biol Chem. 2007;282(16):11805–16. https://doi.org/10.1074/jbc.M611029200.

    Article  CAS  PubMed  Google Scholar 

  72. Rahn DD, Acevedo JF, Roshanravan S, Keller PW, Davis EC, Marmorstein LY, Word RA. Failure of pelvic organ support in mice deficient in fibulin-3. Am J Pathol. 2009;174(1):206–15. https://doi.org/10.2353/ajpath.2009.080212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McLaughlin PJ, Bakall B, Choi J, Liu Z, Sasaki T, Davis EC, Marmorstein AD, Marmorstein LY. Lack of fibulin-3 causes early aging and herniation, but not macular degeneration in mice. Hum Mol Genet. 2007;16(24):3059–70. https://doi.org/10.1093/hmg/ddm264.

    Article  CAS  PubMed  Google Scholar 

  74. Taylor HS, Vanden Heuvel GB, Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod. 1997;57(6):1338–45. https://doi.org/10.1095/biolreprod57.6.1338.

    Article  CAS  PubMed  Google Scholar 

  75. Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998;101(7):1379–84. https://doi.org/10.1172/JCI1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Connell KA, Guess MK, Chen H, Andikyan V, Bercik R, Taylor HS. HOXA11 is critical for development and maintenance of uterosacral ligaments and deficient in pelvic prolapse. J Clin Invest. 2008;118(3):1050–5. https://doi.org/10.1172/JCI34193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ma Y, Guess M, Datar A, Hennessey A, Cardenas I, Johnson J, Connell KA. Knockdown of Hoxa11 in vivo in the uterosacral ligament and uterus of mice results in altered collagen and matrix metalloproteinase activity. Biol Reprod. 2012;86(4):100. https://doi.org/10.1095/biolreprod.111.093245.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang ZT, Pak J, Shapiro E, Sun TT, Wu XR. Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res. 1999;59(14):3512–7.

    CAS  PubMed  Google Scholar 

  79. McNanley AR, Johnson AM, Flynn MK, Wood RW, Kennedy SD, Reeder JE. Inherited pelvic organ prolapse in the mouse: preliminary evaluation of a new murine model. Int Urogynecol J Pelvic Floor Dysfunct. 2009;20(1):19–25. https://doi.org/10.1007/s00192-008-0723-7.

    Article  PubMed  Google Scholar 

  80. Herrera-Imbroda B, Lara MF, Izeta A, Sievert KD, Hart ML. Stress urinary incontinence animal models as a tool to study cell-based regenerative therapies targeting the urethral sphincter. Adv Drug Deliv Rev. 2015;82–83:106–16. https://doi.org/10.1016/j.addr.2014.10.018.

    Article  CAS  PubMed  Google Scholar 

  81. Jiang HH, Damaser MS. Animal models of stress urinary incontinence. Handb Exp Pharmacol. 2011;202:45–67. https://doi.org/10.1007/978-3-642-16499-6_3.

    Article  CAS  Google Scholar 

  82. Sikora M, Scheiner D, Betschart C, Perucchini D, Mateos JM, di Natale A, Fink D, Maake C. Label-free, three-dimensional multiphoton microscopy of the connective tissue in the anterior vaginal wall. Int Urogynecol J. 2015;26(5):685–91. https://doi.org/10.1007/s00192-014-2571-y.

    Article  PubMed  Google Scholar 

  83. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997;74(2):111–22.

    CAS  PubMed  Google Scholar 

  84. Shapiro SD. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Opin Cell Biol. 1998;10(5):602–8. https://doi.org/10.1016/s0955-0674(98)80035-5.

    Article  CAS  PubMed  Google Scholar 

  85. Kielty CM, Sherratt MJ, Shuttleworth CA. Elastic fibres. J Cell Sci. 2002;115(Pt 14):2817–28.

    Article  CAS  Google Scholar 

  86. Kagan HM, Li W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem. 2003;88(4):660–72. https://doi.org/10.1002/jcb.10413.

    Article  CAS  PubMed  Google Scholar 

  87. Borazjani A, Damaser M. Lysyl oxidase like 1 plays a role in regulation of biomechanical properties of the vagina during the peripartum period. Female Pelvic Med Reconstr Surg. 2016;22(5):S5–6. https://doi.org/10.1097/SPV.0000000000000331.

    Article  Google Scholar 

  88. Borazjani A, Damaser MS. Role of lysyl oxidase like 1 in regulation biomechanical properties during the peripartum period. Int Urogynecol J Pelvic Floor Dysfunct. 2016;27(1):S43. https://doi.org/10.1007/s00192-016-3042-4.

    Article  Google Scholar 

  89. Bretschneider CE, Kuang M, Borazjani A, Rietsch A, Ridgeway BM, Damaser MS. Mesh reduces elasticity in an animal model of pelvic organ prolapse. Int Urogynecology J. 2019;30:S241.

    Google Scholar 

  90. Lee UJ, Gustilo-Ashby AM, Daneshgari F, Kuang M, Vurbic D, Lin DL, Flask CA, Li T, Damaser MS. Lower urogenital tract anatomical and functional phenotype in lysyl oxidase like-1 knockout mice resembles female pelvic floor dysfunction in humans. Am J Physiol Renal Physiol. 2008;295(2):F545-555. https://doi.org/10.1152/ajprenal.00063.2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Fábio Lage for his assistance in creating the Figure 1 illustration.

Funding

This work supported by NIH grants R21HD095234, R21HD095521, Cleveland Clinic and the Rehabilitation Research and Development Service of the Department of Veterans Affairs (Margot S. Damaser).

Author information

Authors and Affiliations

Authors

Contributions

K Allen-Brady: project development, literature review, manuscript writing/editing.

MAT Bortolini: project development, literature review, manuscript writing/editing.

MS Damaser: project development, literature review, manuscript writing/editing.

Corresponding author

Correspondence to Kristina Allen-Brady.

Ethics declarations

Conflict of interest

NONE.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen-Brady, K., Bortolini, M.A.T. & Damaser, M.S. Mouse Knockout Models for Pelvic Organ Prolapse: a Systematic Review. Int Urogynecol J 33, 1765–1788 (2022). https://doi.org/10.1007/s00192-021-05066-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-021-05066-5

Keywords

Navigation