Skip to main content

Advertisement

Log in

Dynamically estimating deformations with wrapped InSAR based on sequential adjustment

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The Interferometric Synthetic Aperture Radar (InSAR) technique has been greatly improved in both scientific studies and engineering applications as more and more InSAR observations become available. However, the long-term and dynamic deformation analysis would be more challenging for ordinary users due to the so big volume of InSAR data. In this paper, we proposed a method, termed as SeaInSAR, which introduces the rationale of sequential adjustment (Sea) algorithm to dynamically estimate the surface deformations with wrapped interferometric phase. The proposed method focuses on the arcs of adjacent coherent points in the short-baseline interferograms to avoid the time-consuming and error-prone phase-unwrapping procedure. When dynamically monitoring the temporal deformations with respect to the area of interest, the Sea algorithm, based on the previous result together with newly observed data, can accelerate the procedure of estimating deformation parameters. Furthermore, by only involving the partial previous deformation time series result rather than all the result, the efficiency of the SeaInSAR method can be significantly improved without any compromise of the accuracy. The Sea algorithm is also used to realize the dynamic estimation of a fading signal in the multi-looked or filtered interferograms. This signal is induced by the temporally varying surface moisture and can bias the deformations when only short temporal-baseline interferograms are used. Its dynamic estimation benefits the high-accuracy and high-efficiency deformation monitoring in the era of big InSAR data. Simulated and real data experiments are conducted in this paper, demonstrating that the proposed SeaInSAR method can improve the computational efficiency by more than 20 times compared with the classical static method. With the availability of more and more SAR data as well as the increasing demand of InSAR engineering applications, the proposed SeaInSAR method has a great potential in the InSAR post-processing procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The Sentinel-1 data were provided by ESA/Copernicus (https://scihub.copernicus.eu/). The MATLAB code of the SeaInSAR method and the result in this paper are available from Jihong Liu upon reasonable request (Email: liujihong@csu.edu.cn).

References

Download references

Acknowledgments

We thank anonymous reviewers for their constructive comments and suggestions. We thank Dr. Zhangfeng Ma, Hohai University for the discussion about the InSAR processing issues. The work was supported by the National Key Basic R&D Program of China (No. 2018YFC1505103), the National Natural Science Foundation of China (No. 42030112), the Science and Technology Project of Hunan Province (No. 2020JJ2043), the Fundamental Research Funds for the Central Universities of Central South University (Nos. 2018zzts684 and 2019zzts011), and the Hunan Provincial Innovation Foundation For Postgraduate (No. CX20190067).

Author information

Authors and Affiliations

Authors

Contributions

JH and ZL provided the initial idea and designed the experiments for this study; JL and JH carried out the designed experiments; JH and JL wrote the manuscript; LW, JZ and ZL analyzed the data and helped with the writing; QS and LZ helped with the data processing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jun Hu.

Appendix

Appendix

1.1 A. Dynamic estimation of deformation model parameters and topographic error

Given two functional models with respect to the archived and new observations, respectively,

$$ {\varvec{L}}^{\left( 1 \right)} = {\mathbf{\mathcal{A}}}^{\left( 1 \right)} \cdot {\mathbf{\mathcal{X}}} + {\mathbf{\rm E}}^{\left( 1 \right)} , {\varvec{P}}^{\left( 1 \right)} $$
(A1)
$$ {\varvec{L}}^{\left( 2 \right)} = {\mathbf{\mathcal{A}}}^{\left( 2 \right)} \cdot {\mathbf{\mathcal{X}}} + {\mathbf{\rm E}}^{\left( 2 \right)} , {\varvec{P}}^{\left( 2 \right)} $$
(A2)

the initial estimation of the unknown \({\hat{\mathbf{\mathcal{X}}}}^{\left( 1 \right)}\) and its variance and covariance matrix \({\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)}\) can be derived based on Eq. (A1) by the WLS method

$$ {\hat{\mathbf{\mathcal{X}}}}^{\left( 1 \right)} = \left( {\left( {{\mathbf{\mathcal{A}}}^{\left( 1 \right)} } \right)^{T} {\varvec{P}}^{\left( 1 \right)} {\mathbf{\mathcal{A}}}^{\left( 1 \right)} } \right)^{ - 1} \left( {{\mathbf{\mathcal{A}}}^{\left( 1 \right)} } \right)^{T} {\varvec{P}}^{\left( 1 \right)} {\varvec{L}}^{\left( 1 \right)} $$
(A3)
$$ {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} = \left( {\left( {{\mathbf{\mathcal{A}}}^{\left( 1 \right)} } \right)^{T} {\varvec{P}}^{\left( 1 \right)} {\mathbf{\mathcal{A}}}^{\left( 1 \right)} } \right)^{ - 1} $$
(A4)

The dynamic estimation of the unknowns \({\hat{\mathbf{\mathcal{X}}}}^{\left( 2 \right)}\) can be considered as the static estimation of combining Eqs. (A1) and (A2), i.e.,

$$ {\hat{\mathbf{\mathcal{X}}}}^{\left( 2 \right)} = {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 2 \right)} \left( {\left( {{\mathbf{\mathcal{A}}}^{\left( 1 \right)} } \right)^{T} {\varvec{P}}^{\left( 1 \right)} {\varvec{L}}^{\left( 1 \right)} + \left( {{\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{T} {\varvec{P}}^{\left( 2 \right)} {\varvec{L}}^{\left( 2 \right)} } \right) $$
(A5)

where \({\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 2 \right)} = \left( {\left( {{\mathbf{\mathcal{A}}}^{\left( 1 \right)} } \right)^{T} {\varvec{P}}^{\left( 1 \right)} {\mathbf{\mathcal{A}}}^{\left( 1 \right)} + \left( {{\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{T} {\varvec{P}}^{\left( 2 \right)} {\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{ - 1}\). Let

$$ \left( {{\mathbf{\mathcal{A}}}^{\left( 1 \right)} } \right)^{T} {\varvec{P}}^{\left( 1 \right)} {\varvec{L}}^{\left( 1 \right)} = \left( {{\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} } \right)^{ - 1} {\hat{\mathbf{\mathcal{X}}}}^{\left( 1 \right)} $$
(A6)
$$ \left( {{\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} } \right)^{ - 1} = {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 2 \right)} - \left( {{\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{T} {\varvec{P}}^{\left( 2 \right)} {\mathbf{\mathcal{A}}}^{\left( 2 \right)} $$
(A7)

Then, Eq. (A5) can be written as

$$ {\hat{\mathbf{\mathcal{X}}}}^{\left( 2 \right)} = {\hat{\mathbf{\mathcal{X}}}}^{\left( 1 \right)} + {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 2 \right)} \left( {{\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{T} {\varvec{P}}^{\left( 2 \right)} \left( {{\varvec{L}}^{\left( 2 \right)} - {\mathbf{\mathcal{A}}}^{\left( 2 \right)} {\hat{\mathbf{\mathcal{X}}}}^{\left( 1 \right)} } \right) $$
(A8)

Based on the matrix inversion formula, \({\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 2 \right)}\) can be represented as

$$ {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 2 \right)} = \left( {\left( {{\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} } \right)^{ - 1} + \left( {{\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{T} {\varvec{P}}^{\left( 2 \right)} {\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{ - 1} = {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} - {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} \left( {{\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{T} \left( {\left( {{\varvec{P}}^{\left( 2 \right)} } \right)^{ - 1} + {\mathbf{\mathcal{A}}}^{\left( 2 \right)} {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} \left( {{\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{T} } \right)^{ - 1} {\mathbf{\mathcal{A}}}^{\left( 2 \right)} {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} $$
(A9)

Simultaneously, after premultiplication of Eq. (A7) by \({\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 2 \right)}\) and postmultiplication of Eq. (A7) by \({\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)}\), we can obtain the following formula

$$ {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 2 \right)} = {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} - {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 2 \right)} \left( {{\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{T} {\varvec{P}}^{\left( 2 \right)} {\mathbf{\mathcal{A}}}^{\left( 2 \right)} {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} $$
(A10)

By comparing Eqs. (A9) and (A10), the following equation can be established

$$ {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 2 \right)} \left( {{\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{T} {\varvec{P}}^{\left( 2 \right)} = {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} \left( {{\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{T} \left( {\left( {{\varvec{P}}^{\left( 2 \right)} } \right)^{ - 1} + {\mathbf{\mathcal{A}}}^{\left( 2 \right)} {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} \left( {{\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{T} } \right)^{ - 1} $$
(A11)

Combining (A8) and (A11), we can obtain the following equation,

$$ \begin{aligned} {\hat{\mathbf{\mathcal{X}}}}^{\left( 2 \right)} & = {\hat{\mathbf{\mathcal{X}}}}^{\left( 1 \right)} + {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} \left( {{\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{T} \\ &\quad \left( {\left( {{\varvec{P}}^{\left( 2 \right)} } \right)^{ - 1} + {\mathbf{\mathcal{A}}}^{\left( 2 \right)} {\varvec{Q}}_{{{\hat{\mathbf{\mathcal{X}}}}}}^{\left( 1 \right)} \left( {{\mathbf{\mathcal{A}}}^{\left( 2 \right)} } \right)^{T} } \right)^{ - 1} \left( {{\varvec{L}}^{\left( 2 \right)} - {\mathbf{\mathcal{A}}}^{\left( 2 \right)} {\hat{\mathbf{\mathcal{X}}}}^{\left( 1 \right)} } \right) \end{aligned}$$
(A12)

which is the same as the equations in Sect. 2.3.1.

1.2 B. Dynamic estimation of deformation time series

Given the functional model between the deformation time series and the InSAR observations corrected by topographic error,

$$ \tilde{\user2{L}}^{\left( 1 \right)} = {\varvec{A}}^{\left( 1 \right)} {\varvec{X}} + {\varvec{B}}^{\left( 1 \right)} {\varvec{Y}},{ }\tilde{\user2{P}}^{\left( 1 \right)} $$
(A13)
$$ \tilde{\user2{L}}^{\left( 2 \right)} = {\varvec{B}}^{\left( 2 \right)} {\varvec{Y}} + {\varvec{C}}^{\left( 2 \right)} {\varvec{Z}},{ }\tilde{\user2{P}}^{\left( 2 \right)} $$
(A14)

the initial estimation of deformation time series \(\hat{\mathbb{X}}^{\left( 1 \right)} = \left[ {\begin{array}{*{20}c} {\left( {\hat{\user2{X}}^{\left( 1 \right)} } \right)^{T} } & {\left( {\hat{\user2{Y}}^{\left( 1 \right)} } \right)^{T} } \\ \end{array} } \right]^{T}\) can be derived by

$$ \hat{\mathbb{X}}^{\left( 1 \right)} = {\varvec{Q}}_{{\hat{\mathbb{X}}}}^{\left( 1 \right)} \left[ {\begin{array}{*{20}c} {{\varvec{A}}^{\left( 1 \right)} } & {{\varvec{B}}^{\left( 1 \right)} } \\ \end{array} } \right]^{T} \tilde{\user2{P}}^{\left( 1 \right)} \tilde{\user2{L}}^{\left( 1 \right)} $$
(A15)

where

$$ {\varvec{Q}}_{{\hat{\mathbb{X}}}}^{\left( 1 \right)} = \left( {\left[ {\begin{array}{*{20}c} {{\varvec{A}}^{\left( 1 \right)} } & {{\varvec{B}}^{\left( 1 \right)} } \\ \end{array} } \right]^{T} \tilde{\user2{P}}^{\left( 1 \right)} \left[ {\begin{array}{*{20}c} {{\varvec{A}}^{\left( 1 \right)} } & {{\varvec{B}}^{\left( 1 \right)} } \\ \end{array} } \right]} \right)^{ - 1} = \left[ {\begin{array}{*{20}c} {\left( {{\varvec{A}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{A}}^{\left( 1 \right)} } & {\left( {{\varvec{A}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{B}}^{\left( 1 \right)} } \\ {\left( {{\varvec{B}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{A}}^{\left( 1 \right)} } & {\left( {{\varvec{B}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{B}}^{\left( 1 \right)} } \\ \end{array} } \right]^{ - 1} $$
(A16)

and \({\varvec{Q}}_{{\hat{\mathbb{X}}}}^{\left( 1 \right)}\) is the variance and covariance matrix of \(\hat{\mathbb{X}}^{\left( 1 \right)}\).

When the new observation \(\tilde{\user2{L}}^{\left( 2 \right)}\) is available, the functional model will be established by taking the initial estimation \(\hat{\mathbb{X}}^{\left( 1 \right)}\) into account, i.e.,where

$$ \left\{ {\begin{array}{*{20}c} {\Delta \hat{\mathbb{X}}^{\left( 1 \right)} = {\mathbf{\mathcal{I}}}\left[ {\begin{array}{*{20}c} {\Delta {\varvec{X}}^{{\varvec{T}}} } & {\Delta {\varvec{Y}}^{{\varvec{T}}} } & {{\varvec{Z}}^{{\varvec{T}}} } \\ \end{array} } \right]^{T} ,{\varvec{Q}}_{{\hat{\mathbb{X}}}}^{\left( 1 \right)} } \\ \\ {{{\varvec{\Gamma}}} = {\mathbb{A}}^{\left( 2 \right)} \left[ {\begin{array}{*{20}c} {\Delta {\varvec{X}}^{{\varvec{T}}} } & {\Delta {\varvec{Y}}^{{\varvec{T}}} } & {{\varvec{Z}}^{{\varvec{T}}} } \\ \end{array} } \right]^{T} ,\tilde{\user2{P}}^{\left( 2 \right)} } \\ \end{array} } \right. $$
$$ {{\varvec{\Gamma}}} = \tilde{\user2{L}}^{\left( 2 \right)} - {\varvec{B}}^{\left( 2 \right)} \cdot {\varvec{Y}}^{\left( 1 \right)} $$
(A17)
$$ {\mathbf{\mathcal{I}}} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{array} } \right] $$
(A18)
$$ {\mathbb{A}}^{\left( 2 \right)} = \left[ {\begin{array}{*{20}c} 0 & {{\varvec{B}}^{\left( 2 \right)} } & {{\varvec{C}}^{\left( 2 \right)} } \\ \end{array} } \right] $$
(A19)

Then, based on the weighted least square (WLS) method, the following equations will be satisfied

$$ \left( {{\mathbf{\mathcal{I}}}^{T} \left( {{\varvec{Q}}_{{\hat{\mathbb{X}}}}^{\left( 1 \right)} } \right)^{ - 1} {\mathbf{\mathcal{I}}} + \left( {{\mathbb{A}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {\mathbb{A}}^{\left( 2 \right)} } \right)\left[ {\begin{array}{*{20}c} {\Delta {\varvec{X}}^{{\varvec{T}}} } & {\Delta {\varvec{Y}}^{{\varvec{T}}} } & {{\varvec{Z}}^{{\varvec{T}}} } \\ \end{array} } \right]^{T} = \left( {{\mathbb{A}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {{\varvec{\Gamma}}} $$
(A20)
$$ \left[ {\begin{array}{*{20}c} {\left( {{\varvec{A}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{A}}^{\left( 1 \right)} } & {\left( {{\varvec{A}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{B}}^{\left( 1 \right)} } & 0 \\ {\left( {{\varvec{B}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{A}}^{\left( 1 \right)} } & {\left( {{\varvec{B}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{B}}^{\left( 1 \right)} + \left( {{\varvec{B}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {\varvec{B}}^{\left( 2 \right)} } & {\left( {{\varvec{B}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {\varvec{C}}^{\left( 2 \right)} } \\ 0 & {\left( {{\varvec{C}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {\varvec{B}}^{\left( 2 \right)} } & {\left( {{\varvec{C}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {\varvec{C}}^{\left( 2 \right)} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\Delta {\varvec{X}}} \\ {\Delta {\varvec{Y}}} \\ {\varvec{Z}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 \\ {\left( {{\varvec{B}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {{\varvec{\Gamma}}}} \\ {\left( {{\varvec{C}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {{\varvec{\Gamma}}}} \\ \end{array} } \right] $$
(A21)

The relationship between \(\Delta {\varvec{X}}\) and \(\Delta {\varvec{Y}}\) can be derived from Eq. (A21) as

$$ \Delta {\varvec{X}} = - \left( {\left( {{\varvec{A}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{A}}^{\left( 1 \right)} } \right)^{ - 1} \cdot \left( {{\varvec{A}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{B}}^{\left( 1 \right)} \Delta {\varvec{Y}} $$
(A22)

Combining Eqs. (A21) and (A22), we can get the following equation

$$ \left[ {\begin{array}{*{20}c} {{\mathbf{\mathcal{P}}} + \left( {{\varvec{B}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {\varvec{B}}^{\left( 2 \right)} } & {\left( {{\varvec{B}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {\varvec{C}}^{\left( 2 \right)} } \\ {\left( {{\varvec{C}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {\varvec{B}}^{\left( 2 \right)} } & {\left( {{\varvec{C}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {\varvec{C}}^{\left( 2 \right)} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\Delta {\varvec{Y}}} \\ {\varvec{Z}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\left( {{\varvec{B}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {{\varvec{\Gamma}}}} \\ {\left( {{\varvec{C}}^{\left( 2 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 2 \right)} {{\varvec{\Gamma}}}} \\ \end{array} } \right] $$
(A23)

where

$$ \begin{aligned} {\mathbf{\mathcal{P}}} & = \left( {{\varvec{B}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{B}}^{\left( 1 \right)} - \left( {{\varvec{B}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{A}}^{\left( 1 \right)} \\ &\quad\quad \left( {\left( {{\varvec{A}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{A}}^{\left( 1 \right)} } \right)^{ - 1} \left( {{\varvec{A}}^{\left( 1 \right)} } \right)^{T} \tilde{\user2{P}}^{\left( 1 \right)} {\varvec{B}}^{\left( 1 \right)} \end{aligned} $$
(A24)

So far, we have verified those equivalence.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Hu, J., Li, Z. et al. Dynamically estimating deformations with wrapped InSAR based on sequential adjustment. J Geod 97, 49 (2023). https://doi.org/10.1007/s00190-023-01741-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-023-01741-1

Keywords

Navigation