Skip to main content

Advertisement

Log in

Measurement of slow-moving along-track displacement from an efficient multiple-aperture SAR interferometry (MAI) stacking

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Multiple-aperture SAR interferometry (MAI) has demonstrated outstanding measurement accuracy of along-track displacement when compared to pixel-offset-tracking methods; however, measuring slow-moving (cm/year) surface displacement remains a challenge. Stacking of multi-temporal observations is a potential approach to reducing noise and increasing measurement accuracy, but it is difficult to achieve a significant improvement by applying traditional stacking methods to multi-temporal MAI interferograms. This paper proposes an efficient MAI stacking method, where multi-temporal forward- and backward-looking residual interferograms are individually stacked before the MAI interferogram is generated. We tested the performance of this method using ENVISAT data from Kīlauea Volcano, Hawai‘i, where displacement on the order of several centimeters per year is common. By comparing results from the proposed stacking methods with displacements from GPS data, we documented measurement accuracies of about 1.03 and 1.07 cm/year for the descending and ascending tracks, respectively—an improvement of about a factor of two when compared with that from the conventional stacking approach. Three-dimensional surface-displacement maps can be constructed by combining stacked InSAR and MAI observations, which will contribute to a better understanding of a variety of geological phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Amelung F, Yun SH, Walter TR, Segall P, Kim SW (2007) Stress control of deep rift intrusion at Mauna Loa Volcano, Hawaii. Science 316(5827):1026–1030

    Article  Google Scholar 

  • Bechor NBD, Zebker HA (2006) Measuring two-dimensional movements using a single InSAR pair. Geophys Res Lett 33(L16311). doi:10.1029/2006GL026883

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383

    Article  Google Scholar 

  • Costantini M (1998) A novel phase unwrapping method based on network programming. IEEE Trans Geosci Remote Sens 36(3):813–821

    Article  Google Scholar 

  • Doin MP, Lasserre C, Peltzer G, Cavalie O, Doubre C (2009) Corrections of stratified tropospheric delays in SAR interferometry: validation with global atmospheric models. J Appl Geophys 69:35–50

    Article  Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal E, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39:8–20

    Article  Google Scholar 

  • Fialko Y, Simons M, Agnew D (2001) The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw 7.1 Hector Mine earthquake, California, from space geodetic observations. Geophys Res Lett 28(16):3063–3066

    Article  Google Scholar 

  • Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038

    Article  Google Scholar 

  • Hu J, Li ZW, Ding XL, Zhu JJ, Zhang L, Sun Q (2012) 3D coseismic displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements. J Geod 86:1029–1041

    Article  Google Scholar 

  • Jo MJ, Won JS, Kim SW, Jung HS (2010) A time-series SAR observation of surface deformation at the southern end of the San Andreas Fault Zone. Geosci J 14(3):277–287

    Article  Google Scholar 

  • Jonsson S, Zebker H, Segall P, Amelung F (2002) Fault slip distribution of the Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull Seismol Soc Am 92(4):1377–1389

    Article  Google Scholar 

  • Jung HS, Won JS, Kim SW (2009) An improvement of the performance of multiple aperture SAR interferometry (MAI). IEEE Trans Geosci Remote Sens 47(8):2859–2869

    Article  Google Scholar 

  • Jung HS, Lu Z, Won JS, Poland MP, Miklius A (2011) Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: application to the June 2007 eruption of Kilauea volcano, Hawaii. IEEE Geosci Remote Sens Lett 8(1):34–38

    Article  Google Scholar 

  • Jung HS, Lee DT, Lu Z, Won JS (2013a) Ionospheric correction of SAR interferograms by multiple-aperture interferometry. IEEE Trans Geosci Remote Sens 51(5):3191–3199

  • Jung HS, Lu Z, Zhang L (2013b) Feasibility of along-track displacement measurement from Sentinel-1 interferometric wide-swath mode. IEEE Trans Geosci Remote Sens 51(1):573–578

  • Liu Z, Jung HS, Lu Z (2014) Joint correction of ionosphere noise and orbital error in L-band SAR interferometry of interseismic deformation in southern California. IEEE Trans Geosci Remote Sens 52(6):3421–3427

    Article  Google Scholar 

  • Lu Z, Dzurisin D, Biggs J, Wicks C, McNutt S (2010) Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008. J Geophys Res 115:B00B02. doi:10.1029/2009JB006969

  • Lyons S, Sandwell D (2003) Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatters, and stacking. J Geophys Res 108(B1). doi:10.1029/2002JB001831

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Fiegl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:138–142

    Article  Google Scholar 

  • Mcmillan M, Shepherd A, Gourmelen N, Park JW, Nienow P, Rinne E, Leeson A (2012) Mapping ice-shelf flow with interferometric synthetic aperture radar stacking. J Glaciol 58(208):265–277

    Article  Google Scholar 

  • Montgomery-Brown EK, Segall P, Miklius A (2009) Kilauea slow slip events: identification, source inversions, and relation to seismicity. J Geophys Res 114:B00A03. doi:10.1029/2008JB006074

  • Montgomery-Brown EK, Sinnett DK, Poland M, Segall P, Orr T, Zebker H, Miklius A (2010) Geodetic evidence for en echelon dike emplacement and concurrent slow slip during the June 2007 intrusion and eruption at Kilauea volcano, Hawaii. J Geophys Res 115:B07405. doi:10.1029/2009JB006658

  • Poland M, Miklius A, Wilson D, Okubo P, Montgomery-Brown E, Segall P, Brooks B, Foster J, Wolfe C, Syracuse E, Thurber C (2010) Slow slip event at Kilauea Volcano. EOS Trans AGU 91(13):118–119

    Article  Google Scholar 

  • Poland MP, Miklius A, Sutton AJ, Thornber CR (2012) A mantle-driven surge in magma supply to Kilauea Volcano during 2003–2007. Nat Geosci 5:295–300

    Article  Google Scholar 

  • Rodriguez E, Martin JM (1992) Theory and design of interferometric synthetic aperture radars. IEE Proc Part F Radar Signal Process 139(2):149–159

    Article  Google Scholar 

  • Rosen PA, Hensley S, Zebker HA, Webb FH, Fielding EJ (1996) Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. J Geophys Res 101(E10):23109–23125

    Article  Google Scholar 

  • Sandwell DT, Price EJ (1998) Phase gradient approach to stacking interferograms. J Geophys Res 103(B12):30183–30204

    Article  Google Scholar 

  • Sandwell DT, Myer D, Mellors R, Shimada M, Brooks B, Foster J (2008) Accuracy and resolution of ALOS interferometry: vector deformation maps of the Father’s Day intrusion at Kilauea. IEEE T Geosci Remote 46(11):3524–3534

    Article  Google Scholar 

  • Simons M, Rosen PA (2007) Interferometric synthetic aperture radar geodesy. Treatise Geophys 3:391–446

    Article  Google Scholar 

  • Strozzi T, Wegmuller U, Tosi L, Bittlli G, Spreckels V (2001) Land subsidence monitoring with differential SAR interferometry. Photogramm Eng Remote 67(11):1261–1270

    Google Scholar 

  • Wright T, Parsons B, Fielding E (2001) Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry. Geophys Res Lett 28(10):2117–2120

    Article  Google Scholar 

  • Wright TJ, Parsons BE, Lu Z (2004) Toward mapping surface deformation in three dimensions using InSAR. Geophys Res Lett 31:L01607. doi:10.1029/2003GL018827

  • Zebker HA, Villasenor J (1992) Decorrelation in interferometric radar echoes. IEEE Trans Geosci Remote 30(5):950–959

    Article  Google Scholar 

  • Zhang L, Lu Z, Ding X, Jung HS, Feng G, Lee CW (2012) Mapping ground surface deformation using temporarily coherent point SAR interferometry: application to Los Angeles Basin. Remote Sens Environ 117:429–439

    Article  Google Scholar 

Download references

Acknowledgments

The research described in this paper was carried out with financial support from the Space Core Technology Development Program through the National Research Foundation of Korea, funded by the ministry of education, science and technology (2012M1A3A3A02033465). This study also supported by the MSIP (Ministry of Science, ICT and Future Planning) and NRF (National Research Foundation of Korea) under the Space Core Technology Development Program (project id: 2013M1A3A3A02042314). The Hawai‘i GPS network is supported by grants from the USGS, NSF, and NASA, and is operated in collaboration by the USGS, Stanford University, and Pacific GPS Facility at the University of Hawai’i. GPS RINEX data are archived at UNAVCO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Sup Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, MJ., Jung, HS., Won, JS. et al. Measurement of slow-moving along-track displacement from an efficient multiple-aperture SAR interferometry (MAI) stacking. J Geod 89, 411–425 (2015). https://doi.org/10.1007/s00190-014-0786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0786-9

Keywords

Navigation