Skip to main content
Log in

Fast approximation algorithm to noise components estimation in long-term GPS coordinate time series

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Understanding the noise content of the Global Positioning System (GPS) coordinate time series is a prerequisite for a realistic assessment and uncertainty of unknown parameters. Variance component estimation methods [e.g., restricted maximum likelihood estimator (REML)] are used to assess the noise content of GPS coordinate time series. For large-scale data, namely over a wide range of spatial and temporal scales, the previous methods’ efficiency could significantly improve. Meanwhile, the estimation method, including repeated inversion of large matrices, has led to intensive computations and large storage requirements. By quantifying the REML estimator by decorrelation property of discrete wavelet transformation, the current research has offered FREML (fast REML) for accurate and fast approximation of noise content. For evaluating the method’s efficiency, 360 synthetic daily time series with different lengths \(N=2048\), 4096, and 8192 observation epochs were used. The time series composed of linear trends, periodic signals, offsets, transient displacements, gaps (up to 10%), and a combination of white, flicker, and random walk noises. The FREML algorithm’s outcomes were compared with existing software that uses a maximum likelihood approach to quantify the uncertainties (e.g., Hector). The results indicated that both methods provided equivalent results for noise components, unknown parameters (rate, offset, and transient displacement), and their uncertainties. Moreover, the FREML method reduced the computation time by a factor of 2–14 compared to Hector software, depending on the amount of data and missing epochs. For more assessment of the method, the FREML method was applied to the 36 real time series with noise models as (i) white plus flicker noise and (ii) combination of white, flicker, and random walk noises. The results demonstrated that the two methods’ outcomes were close, and the FREML method speeded up the estimation of noise and unknown parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The simulated GPS data used in the current study are available from the corresponding author on reasonable request. Furthermore, the real GPS time series are freely downloadable from Scripps Orbit and Permanent Array Center (SOPAC) (http://sopac-csrc.ucsd.edu).

References

  • Agnew D (1992) The time domain behavior of power law noises. Geophys Res Lett 19(4):333–336

    Article  Google Scholar 

  • Allen RM, Ziv A (2011) Application of real-time GPS to earthquake early warning. Geophys Res Lett 38(16):L16310

    Article  Google Scholar 

  • Amiri-Simkooei AR (2016) Non-negative least-squares variance component estimation with application to GPS time series. J Geod 90(5):451–466

    Article  Google Scholar 

  • Amiri-Simkooei AR, Tiberius CCJM, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res Solid Earth 112(B7):B07413

    Article  Google Scholar 

  • Amiri-Simkooei A, Hosseini-Asl M, Asgari J, Zangeneh-Nejad F (2019) Offset detection in GPS position time series using multivariate analysis. GPS Solut 23(13):163–179

    Google Scholar 

  • Aoki Y (2017) Space geodetic tools provide early warnings for earthquakes and volcanic eruptions. J Geophys Res Solid Earth 122:3241–3244

    Article  Google Scholar 

  • Argus DF, Peltier WR, Drummond R, Moore AW (2014) The antarctica component of postglacial rebound model ICE-6G-C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys J Int 198(1):537–563

    Article  Google Scholar 

  • Bevis M, Brown A (2014) Trajectory models and reference frames for crustal motion geodesy. J Geod 88(3):283–311

    Article  Google Scholar 

  • Bevis M, Kendrick E, Cser A, Smalley R Jr (2004) Geodetic measurement of the local elastic response to the changing mass of water in Lago Laja, Chile. Phys Earth Planet Inter 141(2):71–78

    Article  Google Scholar 

  • Blewitt G, Kreemer C, Hammond WC, Gazeaux J (2017) MIDAS robust trend estimator for accurate GPS station velocities without step detection. J Geophys Res Solid Earth 121(3):2054–2068

    Article  Google Scholar 

  • Bock Y, Melgar D (2016) Physical applications of GPS geodesy: a review. Rep Prog Phys 79(10):106801

    Article  Google Scholar 

  • Bos M, Fernandes R, Williams S, Bastos L (2008) Fast error analysis of continuous GPS observations. J Geod 82(3):157–166

    Article  Google Scholar 

  • Bos M, Bastos L, Fernandes R (2010) The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series. J Geodyn 49(3–4):205–209

    Article  Google Scholar 

  • Bos MS, Fernandes RMS, Williams SDP, Bastos L (2013) Fast error analysis of continuous GNSS observations with missing data. J Geod 87(4):351–360

    Article  Google Scholar 

  • Colombelli S, Allen RM, Zollo A (2013) Application of real-time GPS to earthquake early warning in subduction and strike-slip environments. J Geophys Res Solid Earth 118(7):3448–3461

    Article  Google Scholar 

  • Crocetto N, Gatti M, Russo P (2000) Simplified formulae for the bique estimation of variance components in disjunctive observation groups. J Geod 74(6):447–457

    Article  Google Scholar 

  • Dmitrieva K, Segall P, DeMets CJ (2015) Network-based estimation of time-dependent noise in GPS position time series. J Geod 89(6):591–606

    Article  Google Scholar 

  • Gazeaux J, Williams S, King M, Bos M, Dach R, Deo M, Moore A, Ostini L, Petrie E, Roggero M, Teferle FN, Olivares G, Webb FH (2013) Detecting offsets in GPS time series: first results from the detection of offsets in GPS experiment. J Geophys Res Solid Earth 118(5):2397–2407

    Article  Google Scholar 

  • Grafarend E, Awange J (2012) Applications of linear and nonlinear models: fixed effects, random effects, and total least squares. Springer, Berlin

    Book  Google Scholar 

  • Gualandi A, Avouac JP, Galetzka J, Genrich JF, Blewitt G, Adhikari LB, Koirala BP, Gupta R, Upreti BN, Pratt-Sitaula B, Liu-Zeng J (2016) Pre- and post-seismic deformation related to the 2015, Mw 7.8 Gorkha earthquake, Nepal. Tecto

  • Hackl M, Hugentobler MRU, Wonnacott R (2011) Estimation of velocity uncertainties from GPS time series: examples from the analysis of the South African TrigNet network. J Geophys Res Solid Earth 116(B15):B11404

    Google Scholar 

  • Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related problems. J Am Stat Assoc 72(358):320–338

    Article  Google Scholar 

  • He X, Bos M, Montillet J, Fernandes R (2019) Investigation of the noise properties at low frequencies in long GNSS time series. J Geod 93(9):1271–1282

    Article  Google Scholar 

  • Heki K (2001) Seasonal modulation of interseismic strain buildup in northeastern Japan driven by snow loads. Science 293(5527):89–92

    Article  Google Scholar 

  • Helmert F (1924) Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate, 3rd edn. Teubner, Leipzig

    Google Scholar 

  • Herring TA, Melbourne TI, Murray MH, Floyd MA, Szeliga WM, King RW, Phillips DA, Puskas CM, Santillan M, Wang L (2016) Plate boundary observatory and related networks: GPS data analysis methods and geodetic products. Rev Geophys 54(4):759–808

    Article  Google Scholar 

  • Hosking JRM (1981) Fractional differencing. Biometrika 68(1):165–176

    Article  Google Scholar 

  • Ji K, Shen Y, Wang F (2020) Signal extraction from GNSS position time series using weighted wavelet analysis. Remote Sens 12(6):992

    Article  Google Scholar 

  • Jiang W, Deng L, Li Z, Zhou X, Liu H (2012a) Effects on noise properties of GPS time series caused by higher-order ionospheric corrections. Adv Space Res 7(53):1035–1046

    Google Scholar 

  • Jiang Y, Wdowinski S, Dixon TH, Hackl M, Protti MVG (2012b) Slow slip events in Costa Rica detected by continuous GPS observations, 2002–2011. Geochem Geophys Geosyst 13(4):Q04006

    Article  Google Scholar 

  • Johnson H, Wyatt F (1994) Geodetic network design for fault-mechanics studies. Manuscr Geod 19:309–323

    Google Scholar 

  • Kaczmarek A, Kontny B (2018) Identification of the noise model in the time series of GNSS stations coordinates using wavelet analysis. Remote Sens 10(10):1611

    Article  Google Scholar 

  • Kawamoto S, Ohta Y, Hiyama Y, Todoriki M, Nishimura T, Furuya T, Sato Y, Yahagi T, Miyagawa K (2017) REGARD: a new GNSS-based real-time finite fault modeling system for GEONET. J Geophys Res Solid Earth 122(2):1324–1349

    Article  Google Scholar 

  • King MA, Watson CS (2010) Long GPS coordinate time series: multipath and geometry effects. J Geophys Res Solid Earth 115(B4):2500–2511

    Article  Google Scholar 

  • King M, Bevis M, Wilson T, Johns B, Blume F (2012) Monument-antenna effects on GPS coordinate time series with application to vertical rates in Antarctica. J Geod 86(1):53–63

    Article  Google Scholar 

  • Klos A, Bogusz J, Figurski M, Gruszczynski M (2016a) Error analysis for European IGS stations. Stud Geophys Geod 60(1):17–34

    Article  Google Scholar 

  • Klos A, Bogusz J, Figurski M, Kosek W (2016b) Noise analysis of continuous GPS time series of selected EPN stations to investigate variations in stability of monument types. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VIII Hotine-Marussi symposium on mathematical geodesy. International association of geodesy symposia, vol 137. Springer, Berlin, pp 19–26

    Google Scholar 

  • Klos A, Bogusz J, Bos MS, Gruszczynska M (2020) Modelling the GNSS time series: different approaches to extract seasonal signals. Springer, Cham, pp 211–237

    Google Scholar 

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, Heidelberg. ISBN 978-3-662-03976-2

  • Koch KR (1986) Maximum likelihood estimate of variance components. Bull Geod 60(4):329–338

    Article  Google Scholar 

  • Kusche J (2003) A Monte-Carlo technique for weight estimation in satellite geodesy. J Geod 76(11):641–652

    Article  Google Scholar 

  • Langbein J (2004) Noise in two-color electronic distance meter measurements revisited. J Geophys Res Solid Earth 109(B4):2075

    Article  Google Scholar 

  • Langbein J (2008) Noise in GPS displacement measurements from southern California and Southern Nevada. J Geophys Res Solid Earth 113(B5):1–12

    Article  Google Scholar 

  • Langbein J (2017) Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors. J Geod 91(8):985–994

    Article  Google Scholar 

  • Langbein J, Johnson H (1997) Correlated errors in geodetic time series: implications for time-dependent deformation. J Geophys Res Solid Earth 102(B1):591–603

    Article  Google Scholar 

  • Langbein J, Svarc JL (2019) Evaluation of temporally correlated noise in global navigation satellite system time series: geodetic monument performance. J Geophys Res Solid Earth 124(1):925–942

    Article  Google Scholar 

  • Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res Solid Earth 104(B2):2797–2816

    Article  Google Scholar 

  • Melbourne TI, Webb FH (2003) Slow but not quite silent. Science 300(5627):1886–1887

    Article  Google Scholar 

  • Moghtased-Azar K, Grafarend E (2009) Surface deformation analysis of dense GPS networks based on intrinsic geometry: deterministic and stochastic aspects. J Geod 49(83):431–454

    Article  Google Scholar 

  • Moghtased-Azar K, Tehranchi R, Amiri-Simkooei AR (2014) An alternative method for non-negative estimation of variance components. J Geod 88(5):427–439

    Article  Google Scholar 

  • Montillet J-P, Bos MS (2019) Geodetic time series analysis in earth sciences. Springer, New York

    Google Scholar 

  • Montillet J, Tregoning P, McClusky S, Yu K (2013) Extracting white noise statistics in GPS coordinate time series. IEEE Geosci Remote Sens Lett 10(3):563–567

    Article  Google Scholar 

  • Montillet J-P, Williams SDP, Koulali A, McClusky SC (2015) Estimation of offsets in GPS time-series and application to the detection of earthquake deformation in the far-field. Geophys J Int 200(2):1205–1219

    Article  Google Scholar 

  • Nikolaidis R (2002) Observation of geodetic and seismic deformation with the global positioning system. Ph.D. thesis, University of California, San Diego

  • Olivares G, Teferle FN (2013) A Bayesian Monte Carlo Markov chain method for parameter estimation of fractional differenced Gaussian processes. IEEE Trans Signal Process 61(9):2405–2412

    Article  Google Scholar 

  • Ou Z (1989) Estimation of variance and covariance components. Bull géodésique 63(2):139–148

    Article  Google Scholar 

  • Ou Z (1991) Approximative Bayes estimation for variance components. Manuscr Geod 16:168–172

    Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58(3):545–554

    Article  Google Scholar 

  • Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Rao CR, Kleffe J (1988) Estimation of variance components and applications, vol 3. North Holland. ISBN 978-0444700230

  • Rao PS (1997) Variance components: mixed models, methodologies and applications, vol 78. CRC Press, Boca Raton. ISBN 9780412728600

  • Rao CR (1971) Estimation of variance and covariance components—MINQUE theory. J Multivar Anal 1(3):257–275

    Article  Google Scholar 

  • Ray JAZ, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1):55–64

    Article  Google Scholar 

  • Santamaría-Gómez A, Bouin M-N, Collilieux X, Wöppelmann G (2011) Correlated errors in GPS position time series: implications for velocity estimates. J Geophys Res 116:B01405

    Google Scholar 

  • Tehranchi R, Moghtased-Azar K, Safari A (2020) A new statistical test based on the WR for detecting offsets in GPS experiment. Earth Space Sci 7(8):e2019EA000810

    Article  Google Scholar 

  • Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J Geod 82(2):65–82

    Article  Google Scholar 

  • Van Dam TM, Wahr JM, Milly PCD, Shmakin AB, Blewitt G, Lavallée D, Larson KMA (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28(4):651–654

    Article  Google Scholar 

  • Vernant P, Nilforoushan F, Hatzfeld D, Abbassi MR, Vigny C, Masson F, Nankali H, Martinod J, Ashtiani A, Bayer R, Tavakoli F, Chéry J (2004) Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys J Int 157(1):381–398

    Article  Google Scholar 

  • Wang W, Zhao B, Wang Q, Yang S (2012) Noise analysis of continuous GPS coordinate time series from CMONOC. Adv Space Res 49(5):943–956

    Article  Google Scholar 

  • Wernicke B, Davis JL, Bennett RA, Normandeau JE, Friedrich AM, Niemi NA (2004) Tectonic implications of a dense continuous GPS velocity field at Yucca Mountain, Nevada. J Geophys Res Solid Earth 109(B12):B12404

    Article  Google Scholar 

  • Williams SDP (2003a) Offsets in global positioning system time series. J Geophys Res Solid Earth 108(B6):2310

    Article  Google Scholar 

  • Williams SDP (2003b) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76(9):483–494

    Article  Google Scholar 

  • Williams SDP (2008) CATS: GPS coordinate time series analysis software. GPS Solut 12(2):147–153

    Article  Google Scholar 

  • Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res Solid Earth 109(B3):B03412

    Article  Google Scholar 

  • Wu H, Li K, Shi W, Clarke KC, Zhang J, Li H (2015) A wavelet-based hybrid approach to remove the flicker noise and the white noise from GPS coordinate time series. GPS Solut 19(4):511–523

    Article  Google Scholar 

  • Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res Solid Earth 102(B8):18035–18055

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the editor and three anonymous reviewers for their helpful comments which helped to improve the manuscript considerably.

Author information

Authors and Affiliations

Authors

Contributions

R.T. performed experiments, analyzed data and carried out the implementation; K.M. is the second supervisor and wrote the manuscript; A.S. is the first supervisor of the research.

Corresponding author

Correspondence to K. Moghtased-Azar.

Appendices

Discrete wavelet transform (DWT)

This section recalls the basics of discrete wavelet transform (DWT). For further details about wavelet theory, Percival and Walden (2000) can be referred. Let \( \varvec{x} \in \mathbb {R}^{N \times 1} \) be a signal with a sample size given by \( N=2^J \). With \( \varvec{V}_0\equiv \varvec{x} \), the jth level DWT wavelet and scaling coefficients are \( N_j=N/2^j \) dimensional vectors \( \varvec{W}_j \) and \(\varvec{V}_j \) whose elements are given by:

$$\begin{aligned} {W}_{j,n}&=\sum _ {l=0} ^ {L-1} {h}_{l}\varvec{V}_{j-1 , (2n+1-l) ~\mathrm {mod}~ N_{j-1}}; \nonumber \\&\quad n=0,\ldots ,N_j-1\nonumber \\ {V}_{j,n}&=\sum _ {l=0} ^ {L -1} {g}_{l}\varvec{V}_{j-1 , (2n+1-l)~ \mathrm {mod}~ N_{j-1}}, \end{aligned}$$
(24)

where \( \mathrm {mod} \) denotes modulo operator. The vectors \( \varvec{h}=[ h_0 ~h_1~ \ldots ~h_{L-1}]^\mathrm {T} \in \mathbb {R}^{L \times 1} \) and \( \varvec{g}=[ g_0 ~g_1~ \ldots ~g_{L-1}]^\mathrm {T}\in \mathbb {R}^{L \times 1} \) are wavelet (high-pass) and scaling (low-pass) filters at the unit scale, respectively. If, however, the sample size N be an integer multiple of \( 2^{J_0 }\) (\( J_0 \le J \)), the algorithm can be stopped after \( J_0 \) repetitions which is known as partial DWT to level \( J_0 \) . These coefficients also may be obtained directly from the signal \( \varvec{x} \) via:

$$\begin{aligned} {W}_{j,n}&=\sum _ {l=0} ^ {L_j -1} {h}_{j,l}x_{(2^j (n+1)-1-l)~\mathrm {mod}~N},\nonumber \\ {V}_{j,n}&=\sum _ {l=0} ^ {L_j -1} {g}_{j,l}x_{(2^j (n+1)-1-l)~\mathrm {mod}~N}, \end{aligned}$$
(25)

where \( \varvec{h}_j=[ h_{j,0} ~h_{j,1}~ \ldots ~h_{j,L_j-1}]^\mathrm {T}\in \mathbb {R}^{L_j \times 1} \) and \( \varvec{g}_j=[ g_{j,0} ~g_{j,1}~ \ldots ~g_{j,L_j-1}]^\mathrm {T}\in \mathbb {R}^{L_j \times 1} \) are wavelet and scaling filters, relating \( \varvec{W}_{j} \) and \( \varvec{V}_{j}\) to \( \varvec{x} \), respectively, and \( L_j=(2^j -1)(L-1)+1\). jth level wavelet filter \( \varvec{h}_j \) is formed by convolving together the following j filters:

$$\begin{aligned} \text {filter~1}&: g_0,g_1,\ldots , g_{L-2},g_{L-1}\nonumber \\ \text {filter~2}&: g_0,0,g_1,0,\ldots , g_{L-2},0,g_{L-1}\nonumber \\&\qquad \qquad \qquad \qquad \vdots \nonumber \\ \text {filter~j-1}&: g_0,\underbrace{0,\ldots ,0}_{2^{j-2}-1~\text {zeros}},g_1,\underbrace{0,\ldots ,0}_{2^{j-2}-1~\text {zeros}},\ldots , g_{L-2}, \nonumber \\&\quad \underbrace{0,\ldots ,0}_{2^{j-2}-1~\text {zeros}},g_{L-1}\nonumber \\ \text {filter~j}&: h_0,\underbrace{0,\ldots ,0}_{2^{j-1}-1~\text {zeros}},h_1,\underbrace{0,\ldots ,0}_{2^{j-1}-1~\text {zeros}},\ldots , h_{L-2}, \nonumber \\&\quad \underbrace{0,\ldots ,0}_{2^{j-1}-1~\text {zeros}},h_{L-1}. \end{aligned}$$
(26)

In a similar manner, jth level scaling filter \( \varvec{g}_j \) is formed by convolving together the following j filters:

$$\begin{aligned} \text {filter~1}&: g_0,g_1,\ldots , g_{L-2},g_{L-1}\nonumber \\ \text {filter~2}&: g_0,0,g_1,0,\ldots , g_{L-2},0,g_{L-1}\nonumber \\&\qquad \qquad \qquad \qquad \vdots \nonumber \\ \text {filter~j-1}&: g_0,\underbrace{0,\ldots ,0}_{2^{j-2}-1~\text {zeros}},g_1,\underbrace{0,\ldots ,0}_{2^{j-2}-1~\text {zeros}},\ldots , g_{L-2}, \nonumber \\&\quad \underbrace{0,\ldots ,0}_{2^{j-2}-1~\text {zeros}},g_{L-1}\nonumber \\ \text {filter~j}&: g_0,\underbrace{0,\ldots ,0}_{2^{j-1}-1~\text {zeros}},g_1,\underbrace{0,\ldots ,0}_{2^{j-1}-1~\text {zeros}},\ldots , g_{L-2},\nonumber \\&\quad \underbrace{0,\ldots ,0}_{2^{j-1}-1~\text {zeros}},g_{L-1}. \end{aligned}$$
(27)

In matrix notation, Eq.  (25) could be rewritten as:

$$\begin{aligned} {\varvec{W}}_j={\mathcal {W}} _j \varvec{x};\quad {\varvec{V}}_j={\mathcal {V}} _j \varvec{x}, \end{aligned}$$
(28)

where the rows of \( {\mathcal {W}} _j\in \mathbb {R}^{N_j \times N} \) and \( {\mathcal {V}} _j\in \mathbb {R}^{N_j \times N}\) contain circularly shifted versions of \( \varvec{h}^\circ _j \) and \( \varvec{g}^{\circ }_j \), respectively, which by definition are \( \varvec{h}_j \) and \( \varvec{g}_j \) periodized to the length N. The first row of \( {\mathcal {W}} _j \) is given by:

$$\begin{aligned}&[h^{\circ }_{j,2^j-1},h^{\circ }_{j,2^j-2},\ldots ,h^{\circ }_{j,1},h^{\circ }_{j,0},h^{\circ }_{j,N-1},h^{\circ }_{j,N-2},\ldots , \nonumber \\&\quad h^{\circ }_{j,2^j+1},h^{\circ }_{j,2^j}] \end{aligned}$$
(29)

subsequent rows are formed by circularly shifting the above equation to the right by \( k2^{j} \) with \( k=1,\ldots ,N_{j}-1 \). The final row is:

$$\begin{aligned}{}[h^{\circ }_{j,N-1},h^{\circ }_{j,N-2},\ldots ,h^{\circ }_{j,1},h^{\circ }_{j,0}] \end{aligned}$$
(30)

A similar construction holds for \( {\mathcal {V}} _j\) with each \( h^{\circ }_{j,l} \) replaced by \( g^{\circ }_{j,l} \). Consequently, the partial DWT of level \( J_0 \) of \( \varvec{x} \) as an orthonormal transform is given by:

$$\begin{aligned} \varvec{W}=\mathcal {W}\varvec{x}, \end{aligned}$$
(31)

where \( \varvec{W}\in \mathbb {R}^{N \times 1}\) and \( \mathcal {W}\in \mathbb {R}^{N \times N} \) are partitioned such that:

$$\begin{aligned} \varvec{W}=\begin{bmatrix} \varvec{W}_1\\ \varvec{W}_2\\ \vdots \\ \varvec{W}_{J_0}\\ \varvec{V}_{J_0}\\ \end{bmatrix} ; \quad \mathcal {W}=\begin{bmatrix} \mathcal {W}_1\\ \mathcal {W}_2\\ \vdots \\ \mathcal {W}_{J_0}\\ \mathcal {V}_{J_0}\\ \end{bmatrix}, \end{aligned}$$
(32)

Furthermore, the jth level DWT detail and smooth are defined by:

$$\begin{aligned} {D}_j={\mathcal {W}} ^{\mathrm {T}}_j {\varvec{W}}_j;\quad {S}_j={\mathcal {V}}^{\mathrm {T}} _j {\varvec{V}}_j, \end{aligned}$$
(33)

in terms of which, the DWT-based additive decomposition (i.e., MRA) can be expressed as:

$$\begin{aligned} \varvec{x}=\mathcal {W}^\mathrm {T}\varvec{W}=\sum _{j=1}^{J_0}{D}_j+{S}_{J_0}. \end{aligned}$$
(34)

1.1 An illustrative example for Haar wavelet and scaling filters

The Haar wavelet and scaling filters at unit scale are defined by, respectively, \( \varvec{h}=\varvec{h}_1=[\dfrac{-1}{\sqrt{2}} ~\dfrac{1}{\sqrt{2}}]^\mathrm {T} \) and \( \varvec{g}=\varvec{g}_1=[\dfrac{1}{\sqrt{2}} ~\dfrac{1}{\sqrt{2}}]^\mathrm {T} \). By using Eq. (26), one can obtain wavelet filters \( \varvec{h}_j \) as:

$$\begin{aligned} \varvec{h}_2&=\begin{bmatrix} \dfrac{-1}{2}&\quad \dfrac{-1}{2}&\quad \dfrac{1}{2}&\quad \dfrac{1}{2} \end{bmatrix}\nonumber \\ \varvec{h}_3&=\begin{bmatrix} \dfrac{-1}{2\sqrt{2}}&\quad \dfrac{-1}{2\sqrt{2}}&\quad \dfrac{-1}{2\sqrt{2}}&\quad \dfrac{-1}{2\sqrt{2}}&\quad \dfrac{1}{2\sqrt{2}}&\quad \dfrac{1}{2\sqrt{2}}&\quad \dfrac{1}{2\sqrt{2}}&\quad \dfrac{1}{2\sqrt{2}} \end{bmatrix}\\ \varvec{h}_4&=\bigg [\begin{array}{cccccccccccccccc} \dfrac{-1}{4}&\quad \dfrac{-1}{4}&\quad \dfrac{-1}{4}&\quad \dfrac{-1}{4}&\quad \dfrac{-1}{4}&\quad \dfrac{-1}{4}&\quad \dfrac{-1}{4}&\quad \dfrac{-1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4} \end{array}\bigg ]\nonumber \\ \vdots \nonumber \end{aligned}$$
(35)

similarly by using Eq. (27) scaling filters \( \varvec{g}_j \) can be obtained as:

$$\begin{aligned} \varvec{g}_2&=\begin{bmatrix} \dfrac{1}{2}&\dfrac{1}{2}&\dfrac{1}{2}&\dfrac{1}{2} \end{bmatrix}\nonumber \\ \varvec{g}_3&=\begin{bmatrix} \dfrac{1}{2\sqrt{2}}&\quad \dfrac{1}{2\sqrt{2}}&\quad \dfrac{1}{2\sqrt{2}}&\quad \dfrac{1}{2\sqrt{2}}&\quad \dfrac{1}{2\sqrt{2}}&\quad \dfrac{1}{2\sqrt{2}}&\quad \dfrac{1}{2\sqrt{2}}&\quad \dfrac{1}{2\sqrt{2}} \end{bmatrix}\\ \varvec{g}_4&=\bigg [\begin{array}{cccccccccccccccc} \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4}&\quad \dfrac{1}{4} \end{array}\bigg ]\nonumber \\ \vdots \nonumber \end{aligned}$$
(36)

By periodizing the above filters (defined in Eqs. (35) and (36)) to length N one can obtain, respectively, \( \varvec{h}^\circ _j \) and \( \varvec{g}^\circ _j \). Now by using Eqs. (29) and (30) matrix \( {\mathcal {W}} _j \) (and similarly \( {\mathcal {V}} _j \)) can be obtained. As an example, matrix \( \mathcal {W}\) associated with Haar filters for \( N=16 \) is:

(37)

Derivation of Eq. (19)

In matrix \( Q'_f \), on average, the absolute values of the main diagonal elements are about 12, 54 and 125 times bigger than the elements of first, second and third diagonal, respectively. Furthermore, in matrix \( Q'_{rw}\), the main diagonal elements are at least \(10^{12}\), \(10^{12}\) and \(7\times 10^{11}\) times bigger than the elements of first, second and third diagonal, respectively. Therefore, the cofactor matrices \( Q'_f \) and \( Q'_{rw}\) are almost diagonal matrices that indicate the decorrelation property of DWT for the wavelet coefficients. Hence, by ignoring off-diagonal coefficients, cofactor matrices \( Q'_f \) and \( Q'_{rw} \) can be approximated by diagonal matrices as:

$$\begin{aligned}&Q'_f= {\mathcal {W}} Q_f{\mathcal {W}} ^\mathrm {T}\nonumber \\&\quad \approx \begin{bmatrix} {\mathcal {W}_1} Q_f{\mathcal {W}_1} ^\mathrm {T} &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad 0\\ 0 &{}\quad {\mathcal {W}_2} Q_f{\mathcal {W}_2} ^\mathrm {T} &{}\quad \cdots &{}\quad 0 &{}\quad 0\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad {\mathcal {W}_J} Q_f{\mathcal {W}_J}^\mathrm {T} &{}\quad 0\\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad {\mathcal {V}_J} Q_f{\mathcal {V}_J}^\mathrm {T} \\ \end{bmatrix} \nonumber \\&\quad \approx \begin{bmatrix} c_1I_{N_1} &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad 0\\ 0 &{}\quad c_2I_{N_2} &{}\quad \cdots &{}\quad 0 &{}\quad 0\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad c_J &{}\quad 0\\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad c^*_J \\ \end{bmatrix}, \end{aligned}$$
(38)
$$\begin{aligned}&Q'_{rw}= {\mathcal {W}} Q_{rw}{\mathcal {W}} ^\mathrm {T}\nonumber \\&\quad \approx \begin{bmatrix} {\mathcal {W}_1} Q_{rw}{\mathcal {W}_1} ^\mathrm {T} &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad 0\\ 0 &{}\quad {\mathcal {W}_2} Q_{rw}{\mathcal {W}_2} ^\mathrm {T} &{}\quad \cdots &{}\quad 0 &{}\quad 0\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad {\mathcal {W}_J} Q_{rw}{\mathcal {W}_J}^\mathrm {T} &{}\quad 0\\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad {\mathcal {V}_J} Q_{rw}{\mathcal {V}_J}^\mathrm {T} \\ \end{bmatrix}\nonumber \\&\quad \approx \begin{bmatrix} d_1I_{N_1} &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad 0\\ 0 &{}\quad d_2I_{N_2} &{}\quad \cdots &{}\quad 0 &{}\quad 0\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad d_J &{}\quad 0\\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad d^*_J \\ \end{bmatrix}, \end{aligned}$$
(39)

where \( c_j \)’s and \( d_j \)’s (\( j=1,2,\ldots ,J \)) are the constants along the diagonal elements of \({\mathcal {W}_j} Q_f{\mathcal {W}_j} ^\mathrm {T} \)’s and \({\mathcal {W}_j} Q_{rw}{\mathcal {W}_j} ^\mathrm {T} \)’s, respectively, and do not depend on the time series length. Furthermore, \( c^*_J \) and \( d^*_J \) are equal to \( {\mathcal {V}_J} Q_f{\mathcal {V}_J}^\mathrm {T} \) and \( {\mathcal {V}_J} Q_{rw}{\mathcal {V}_J}^\mathrm {T} \), respectively. (The detailed explanations on the construction of matrices \( {\mathcal {W}_j} \) and \( \mathcal {V}_J \) are presented in “Appendix A”). It should be noted that these constants depend upon scaling factor \( \Delta T ^{-\kappa /4} \) defined in Eq. (6). As an example, these constants associated with Haar wavelet up to level \( J_0=5 \) are shown in Table 5. By substituting Eqs. (38) and (39) in Eq. (18), we can derive Eq. (19).

Table 5 Constants \( c_j \)’s and \( d_j \)’s associated with Haar wavelet up to level \( J_0=5 \)

Derivation of Eqs. (22) and (23)

Let us start with Eq. (21). According to Eqs. (1113) and (20), the coefficients of matrix \( M' \) and vector \( q' \) could be obtained as:

$$\begin{aligned}&M'_{11}= \mathrm {tr}(U' U');\quad M'_{12}= \mathrm {tr}(U' U'Q'_f);\nonumber \\&M'_{13}= \mathrm {tr}(U' U'Q'_{rw})\nonumber \\&M'_{21}=M'_{12};\quad M'_{22}= \mathrm {tr}(U'Q'_f U'Q'_f);\nonumber \\&M'_{23}= \mathrm {tr}(U'Q'_fU'Q'_{rw})\nonumber \\&M'_{31}= M'_{13};\quad M'_{32}= M'_{23};\quad M'_{33}= \mathrm {tr}(U'Q'_{rw} U'Q'_{rw}), \end{aligned}$$
(40)

and:

$$\begin{aligned}&q'_{1}= \varvec{W}^{\mathrm {T}}U'U'\varvec{W};\quad q'_{2}= \varvec{W}^{\mathrm {T}}U'Q'_fU'\varvec{W};\nonumber \\&q'_{3}= \varvec{W}^{\mathrm {T}}U'Q'_{rw}U'\varvec{W}, \end{aligned}$$
(41)

where:

$$\begin{aligned} U'=Q_{\varvec{W}}^{-1}-Q_{\varvec{W}}^{-1}A'(A'^{\mathrm {T}}Q_{\varvec{W}}^{-1}A')^{-1}A'^{\mathrm {T}}Q_{\varvec{W}}^{-1} . \end{aligned}$$
(42)

Substituting Eq. (19) in Eq. (42) yielded as:

$$\begin{aligned} U'=\begin{bmatrix} k_1^{-1}I_{N_1} &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad 0\\ 0 &{}\quad k_2^{-1}I_{N_2} &{}\quad \cdots &{}\quad 0 &{}\quad 0\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad k_j^{-1} &{}\quad 0\\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad 0 \\ \end{bmatrix}. \end{aligned}$$
(43)

By replacing Eqs. (38), (39) and (43) in Eqs. (40) and (41), the simplified forms for coefficients of matrix \( M' \) and vector \( \varvec{q}' \) could be obtained as Eqs. (22) and (23).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tehranchi, R., Moghtased-Azar, K. & Safari, A. Fast approximation algorithm to noise components estimation in long-term GPS coordinate time series. J Geod 95, 18 (2021). https://doi.org/10.1007/s00190-021-01473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-021-01473-0

Keywords

Navigation