Skip to main content
Log in

Network-based estimation of time-dependent noise in GPS position time series

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Some estimates of GPS velocity uncertainties are very low, \(<\)0.1 mm/year with 10 years of data. Yet, residual velocities relative to rigid plate models in nominally stable plate interiors can be an order of magnitude larger. This discrepancy could be caused by underestimating low-frequency time-dependent noise in position time series, such as random walk. We show that traditional estimators, based on individual time series, are insensitive to low-amplitude random walk, yet such noise significantly increases GPS velocity uncertainties. Here, we develop a method for determining representative noise parameters in GPS position time series, by analyzing an entire network simultaneously, which we refer to as the network noise estimator (NNE). We analyze data from the aseismic central-eastern USA, assuming that residual motions relative to North America, corrected for glacial isostatic adjustment (GIA), represent noise. The position time series are decomposed into signal (plate rotation and GIA) and noise components. NNE simultaneously processes multiple stations with a Kalman filter and solves for average noise components for the network by maximum likelihood estimation. Synthetic tests show that NNE correctly estimates even low-level random walk, thus providing better estimates of velocity uncertainties than conventional, single station methods. To test NNE on actual data, we analyze a heterogeneous 15 station GPS network from the central-eastern USA, assuming the noise is a sum of random walk, flicker and white noise. For the horizontal time series, NNE finds higher average random walk than the standard individual station-based method, leading to velocity uncertainties a factor of 2 higher than traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agnew D (1992) The time-domain behavior of power-law noises. Geophys Res Lett 19(4):333–336. doi:10.1029/91GL02832

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Amiri-Simkooei A (2009) Noise in multivariate GPS position time-series. J Geod 83(2):175–187. doi:10.1007/s00190-008-0251-8

    Article  Google Scholar 

  • Amiri-Simkooei A (2013) On the nature of GPS draconitic year periodic pattern in multivariate position time series. J Geophys Res Solid Earth 118(5):2500–2511

    Article  Google Scholar 

  • Amiri-Simkooei A, Tiberius C, Teunissen P (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res 112(B7). doi:10.1029/2006jb004913

  • Baldi P, Casula G, Cenni N, Loddo F, Pesci A (2009) GPS-based monitoring of land subsidence in the Po Plain (Northern Italy). Earth Planet Sci Lett 288:204–212. doi:10.1016/j.epsl.2009.09.023

    Article  Google Scholar 

  • Bennett R, Wernicke B, Niemi N, Friedrich A, Davis J (2003) Contemporary strain rates in the northern Basin and Range province from GPS data. Tectonics 22(2). doi:10.1029/2001tc001355

  • Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geod 84(5):327–337. doi:10.1007/s00190-010-0371-9

    Article  Google Scholar 

  • Blewitt G et al (2005) A Stable North American Reference Frame (SNARF): first release. In: The SNARF Working Group, UNAVCO, Stevenson

  • Bonforte A, Puglisi G (2006) Dynamics of the eastern flank of Mt. Etna volcano (Italy) investigated by a dense GPS network. J Volcanol Geotherm Res 153(3):357–369. doi:10.1016/j.jvolgeores.2005.12.005

    Article  Google Scholar 

  • Calais E, Stein S (2009) Time-variable deformation in the new Madrid seismic zone. Science 323(5920):1442–1442. doi:10.1126/science.1168122

    Article  Google Scholar 

  • Calais E, Han J, DeMets C, Nocquet J et al (2006) Deformation of the North American plate interior from a decade of continuous GPS measurements. J Geophys Res 111(B06):402. doi:10.1029/2005jb004253

    Google Scholar 

  • Davis J, Greenhall C, Stacey P (2005) A Kalman filter clock algorithm for use in the presence of flicker frequency modulation noise. Metrologia 42:1. doi:10.1088/0026-1394/42/1/001

    Article  Google Scholar 

  • Frankel A, Smalley R, Paul J (2012) Significant motions between GPS sites in the New Madrid Region: implications for seismic hazard. Bull Seismol Soc Am 102(2):479–489. doi:10.1785/0120100219

    Article  Google Scholar 

  • Gazeaux J, Williams S, King M, Bos M, Dach R, Deo M, Moore AW, Ostini L, Petrie E, Roggero M et al (2013) Detecting offsets in GPS time series: first results from the detection of offsets in GPS experiment. J Geophys Res Solid Earth 118(5):2397–2407. doi:10.1002/jgrb.50152

    Article  Google Scholar 

  • Hackl M, Malservisi R, Hugentobler U, Wonnacott R (2011) Estimation of velocity uncertainties from GPS time series: examples from the analysis of the South African TrigNet network. J Geophys Res 116(B11):B11404. doi:10.1029/2010jb008142

  • Hill EM, Davis JL, Tamisiea ME, Lidberg M (2010) Combination of geodetic observations and models for glacial isostatic adjustment fields in Fennoscandia. J Geophys Res 115(B7). doi:10.1029/2009jb006967

  • Jiang W, Deng L, Li Z, Zhou X, Liu H (2014) Effects on noise properties of GPS time series caused by higher-order ionospheric corrections. Adv Space Res 53(7):1035–1046. doi:10.1016/j.asr.2013.12.037

    Article  Google Scholar 

  • Johnson H, Agnew D (1995) Monument motion and measurements of crustal velocities. Geophys Res Lett 22(21):2905–2908. doi:10.1029/95gl02661

    Article  Google Scholar 

  • King MA, Watson CS (2010) Long GPS coordinate time series: multipath and geometry effects. J Geophys Res 115(B4). doi:10.1029/2009jb006543

  • King MA, Williams S (2009) Apparent stability of GPS monumentation from short-baseline time series. J Geophys Res 114(B10). doi:10.1029/2009jb006319

  • King MA, Altamimi Z, Boehm J, Bos M, Dach R, Elosegui P, Fund F, Hernández-Pajares M, Lavallee D, Cerveira PJM et al (2010) Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv Geophys 31(5):465–507. doi:10.1007/s10712-010-9100-4

  • Kirchner JW (2005) Aliasing in 1/f \(\alpha \) noise spectra: origins, consequences, and remedies. Phys Rev E 71(6). doi:10.1103/physreve.71.066110

  • Kusche J, Schrama E (2005) Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data. J Geophys Res 110(B9). doi:10.1029/2004jb003556

  • Langbein J (2004) Noise in two-color electronic distance meter measurements revisited. J Geophys Res 109(B04):406. doi:10.1029/2003jb002819

    Google Scholar 

  • Langbein J (2008) Noise in GPS displacement measurements from Southern California and Southern Nevada. J Geophys Res 113(B05):405. doi:10.1029/2007jb005247

    Google Scholar 

  • Langbein J (2012) Estimating rate uncertainty with maximum likelihood: differences between power-law and flicker-random-walk models. J Geod 86(9):775–783. doi:10.1007/s00190-012-0556-5

    Article  Google Scholar 

  • Langbein J, Johnson H (1997) Correlated errors in geodetic time series: implications for time-dependent deformation. J Geophys Res 102(B1):591–603. doi:10.1029/96jb02945

    Article  Google Scholar 

  • Lidberg M, Johansson JM, Scherneck HG, Davis JL (2007) An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia. J Geod 81(3):213–230. doi:10.1007/s00190-006-0102-4

    Article  Google Scholar 

  • Liu M, Yang Y, Stein S, Zhu Y, Engeln J (2000) Crustal shortening in the Andes: why do GPS rates differ from geological rates? Geophys Res Lett 27(18):3005–3008. doi:10.1029/2000gl008532

    Article  Google Scholar 

  • Lü WC, Cheng SG, Yang HS, Liu DP (2008) Application of GPS technology to build a mine-subsidence observation station. J China Univ Min Technol 18(3):377–380. doi:10.1016/s1006-1266(08)60079-6

    Article  Google Scholar 

  • Mao A, Harrison C, Dixon T (1999) Noise in GPS coordinate time series. J Geophys Res 104(B2):2797–2816. doi:10.1029/1998jb900033

    Article  Google Scholar 

  • Márquez-Azúa B, DeMets C (2003) Crustal velocity field of Mexico from continuous GPS measurements, 1993 to June 2001: implications for the neotectonics of Mexico. J Geophys Res 108(B9). doi:10.1029/2002jb002241

  • Merkouriev S, DeMets C (2014) High-resolution estimates of Nubia–North America plate motion: 20 Ma to present. Geophys J Int 196(3):1281–1298. doi:10.1093/gji/ggt463

    Article  Google Scholar 

  • Murray J, Segall P (2005) Spatiotemporal evolution of a transient slip event on the San Andreas fault near Parkfield, California. J Geophys Res 110(B9). doi:10.1029/2005jb003651

  • Papanikolaou ID, Roberts GP, Michetti AM (2005) Fault scarps and deformation rates in Lazio-Abruzzo, Central Italy: comparison between geological fault slip-rate and GPS data. Tectonophysics 408(1):147–176. doi:10.1016/j.tecto.2005.05.043

    Article  Google Scholar 

  • Pritchard M, Simons M, Rosen P, Hensley S, Webb F (2002) Co-seismic slip from the 1995 July 30 Mw = 8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations. Geophys J Int 150(2):362–376. doi:10.1046/j.1365-246x.2002.01661.x

    Article  Google Scholar 

  • Psimoulis P, Ghilardi M, Fouache E, Stiros S (2007) Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data. Eng Geol 90(1):55–70. doi:10.1016/j.enggeo.2006.12.001

    Article  Google Scholar 

  • Puskas C, Smith R, Meertens C, Chang W (2007) Crustal deformation of the Yellowstone–Snake River Plain volcano-tectonic system: campaign and continuous GPS observations, 1987–2004. J Geophys Res 112(B3). doi:10.1029/2006jb004325

  • Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1):55–64. doi:10.1007/s10291-007-0067-7

    Article  Google Scholar 

  • Santamaría-Gómez A, Bouin M, Collilieux X, Wöppelmann G (2011) Correlated errors in GPS position time series: implications for velocity estimates. J Geophys Res 116(B1):B01405. doi:10.1029/2010jb007701

  • Santamaría-Gómez A, Gravelle M, Collilieux X, Guichard M, Míguez BM, Tiphaneau P, Wöppelmann G (2012) Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Glob Planet Chang 98:6–17. doi:10.1016/j.gloplacha.2012.07.007

    Article  Google Scholar 

  • Segall P, Davis JL (1997) GPS applications for geodynamics and earthquake studies. Ann Rev Earth Planet Sci 25(1):301–336. doi:10.1146/annurev.earth.25.1.301

    Article  Google Scholar 

  • Segall P, Matthews M (1997) Time dependent inversion of geodetic data. J Geophys Res 102(B10):22391. doi:10.1029/97jb01795

  • Serpelloni E, Anzidei M, Baldi P, Casula G, Galvani A (2005) Crustal velocity and strain-rate fields in Italy and surrounding regions: new results from the analysis of permanent and non-permanent GPS networks. Geophys J Int 161(3):861–880. doi:10.1111/j.1365-246x.2005.02618.x

    Article  Google Scholar 

  • Teferle F, Bingley R, Williams S, Baker T, Dodson A (2006) Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea-level at tide-gauges in the UK. Philos Trans R Soc A Math Phys Eng Sci 364(1841):917–930. doi:10.1098/rsta.2006.1746

    Article  Google Scholar 

  • Thatcher W (2003) GPS constraints on the kinematics of continental deformation. Int Geol Rev 45(3):191–212. doi:10.2747/0020-6814.45.3.191

    Article  Google Scholar 

  • Tremayne AR, Harvey AC (1983) Time series models. Economica 50(198):216. doi:10.2307/2554073

    Article  Google Scholar 

  • Welch O, Bishop G (1995) An introduction to the kalman filter. Technical Report 95-041, University of North Carolina at Chapel Hill

  • Williams S (2003a) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76(9):483–494. doi:10.1007/s00190-002-0283-4

    Article  Google Scholar 

  • Williams S (2003b) Offsets in Global Positioning System time series. J Geophys Res 108(B6). doi:10.1029/2002jb002156

  • Williams S, Bock Y, Fang P, Jamason P, Nikolaidis R, Prawirodirdjo L, Miller M, Johnson D (2004) Error analysis of continuous GPS position time series. J Geophys Res 109(B3):B03412. doi:10.1029/2003jb002741

  • Wöppelmann G, Martin Miguez B, Bouin MN, Altamimi Z (2007) Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Glob Planet Chang 57(3):396–406. doi:10.1016/j.gloplacha.2007.02.002

  • Wyatt FK (1989) Displacement of surface monuments: vertical motion. J Geophys Res 94(B2):1655–1664. doi:10.1029/jb094ib02p01655

    Article  Google Scholar 

  • Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern california permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res 102:18–18. doi:10.1029/97jb01380

    Google Scholar 

  • Zumberge J, Heflin M, Jefferson D, Watkins M, Webb F (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. doi:10.1029/96jb03860

    Article  Google Scholar 

Download references

Acknowledgments

We thank James Davis (Columbia University) for providing the SNARF GIA model. We acknowledge Sang-Ho Yun for writing the notch filter code. We appreciate fruitful discussions and computational help from Andrew Bradley. We thank the reviewer Matt King, editor Simon Williams, and two anonymous reviewers for extremely helpful suggestions. This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program—Grant 14-EARTH14R-47 and by the USGS Grant G13AP00020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenia Dmitrieva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrieva, K., Segall, P. & DeMets, C. Network-based estimation of time-dependent noise in GPS position time series. J Geod 89, 591–606 (2015). https://doi.org/10.1007/s00190-015-0801-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0801-9

Keywords

Navigation