Skip to main content
Log in

Assessment of second- and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GPS coordinate time series

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Higher-order ionospheric (HOI) delays are one of the principal technique-specific error sources in precise global positioning system analysis and have been proposed to become a standard part of precise GPS data processing. In this research, we apply HOI delay corrections to the Crustal Movement Observation Network of China’s (CMONOC) data processing (from January 2000 to December 2013) and furnish quantitative results for the effects of HOI on CMONOC coordinate time series. The results for both a regional reference frame and global reference frame are analyzed and compared to clarify the HOI effects on the CMONOC network. We find that HOI corrections can effectively reduce the semi-annual signals in the northern and vertical components. For sites with lower semi-annual amplitudes, the average decrease in magnitude can reach 30 and 10 % for the northern and vertical components, respectively. The noise amplitudes with HOI corrections and those without HOI corrections are not significantly different. Generally, the HOI effects on CMONOC networks in a global reference frame are less obvious than the results in the regional reference frame, probably because the HOI-induced errors are smaller in comparison to the higher noise levels seen when using a global reference frame. Furthermore, we investigate the combined contributions of environmental loading and HOI effects on the CMONOC stations. The largest loading effects on the vertical displacement are found in the mid- to high-latitude areas. The weighted root mean square differences between the corrected and original weekly GPS height time series of the loading model indicate that the mass loading adequately reduced the scatter on the CMONOC height time series, whereas the results in the global reference frame showed better agreements between the GPS coordinate time series and the environmental loading. When combining the effects of environmental loading and HOI corrections, the results with the HOI corrections reduced the scatter on the observed GPS height coordinates better than the height when estimated without HOI corrections, and the combined solutions in the regional reference frame indicate more preferred improvements. Therefore, regional reference frames are recommended to investigate the HOI effects on regional networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473

    Article  Google Scholar 

  • Bassiri S, Hajj GA (1993) Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manuscr Geod 18:280–289

    Google Scholar 

  • Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2). doi:10.1029/2002JB002082

  • Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107(B7):ETG 9-1–ETG 9-11

  • Blewitt G, Lavallee D, Clarke P, Nurutdinov K (2001) A new global mode of earth deformation: seasonal cycle detected. Sci 294(5550):2342–2345. doi:10.1126/science.1065328

    Article  Google Scholar 

  • Blewitt G, Altamimi Z, Davis J, Gross R, Kuo CY, Lemoine FG, Moore AW, Neilan RE, Plag HP, Rothacher M, Shum CK, Sideris MG, Schöne T, Tregoning P, Zerbini S (2010) Geodetic observations andglobal referenceframe contributions to understanding sea-level riseand variability. In: Church JA, Woodworth PL, Aarup P, Wilson WS (eds) Understanding sea-level rise and variability. Wiley-Blackwell, Oxford, pp 256–284

    Chapter  Google Scholar 

  • Clarke PJ, Lavallée DA, Geoff B, Tonie VD (2007) Basis functions for the consistent and accurate representation of surface mass loading. Geophys J Int 171(1):1–10

    Article  Google Scholar 

  • Collilieux X, Altamimi Z, Coulot D, van Dam T, Ray J (2010) Impact of loading effects on determination of the international terrestrial reference frame. Adv Space Res 45(1):144–154

    Article  Google Scholar 

  • Dong D, Dickey JO, Chao Y et al (1997) Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys Res Lett 24(15):1867–1870

    Article  Google Scholar 

  • Dong D, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107(B4):2075

    Article  Google Scholar 

  • Dong D, Yunck T, Heflin M (2003) Origin of the International Terrestrial Reference Frame. J Geophys Res 108(B4). doi:10.1029/2002JB002035

  • Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys 10(3):761–797

    Article  Google Scholar 

  • Freymueller J (2009) Seasonal position variations and regional reference frame realization. In: Drewes H (ed) International association of geodesy symposia on geodetic reference frames, vol 134. Springer Verlag, Berlin, New York, pp 191–196. doi:10.1007/978-3-642-00860-3_30

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32(23):L23311

    Article  Google Scholar 

  • GarciaFernandez M, Desai SD, Butala MD et al (2013) Evaluation of different approaches to modeling the second order ionospheric delay on GPS measurements. J Geophys Res 118(12):7864–7873

    Article  Google Scholar 

  • Goebell S, King MA (2011) Effects of azimuthal multipath asymmetry on long GPS coordinate time series. GPS Solut 15(3):287–297

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R (2007) Second-order ionospheric term in GPS: implementation and impact on geodetic estimates. J Geophys Res 112:B08417. doi:10.1029/2006JB004707

    Article  Google Scholar 

  • HernándezPajares M, Aragón-Ángel À, Defraigne P et al (2014) Distribution and mitigation of higherorder ionospheric effects on precise GNSS processing. J Geophys Res 119(4):3823–3837

    Article  Google Scholar 

  • Herring TA, King RW, McClusky SC (2010) Introduction to GAMIT/GLOBK, release 10.4. Massachusetts Institute of Technology, Cambridge

  • Hoque MM, Jakowski N (2008) Estimate of higher order ionospheric errors in GNSS positioning. Radio Sci 43:RS5008. doi:10.1029/2007RS003817

  • Jäggi A, Beutler G, Hugentobler U (2005) Reduced-dynamic orbit determination and the use of accelerometer data. Adv Space Res 36(3):438–444

    Article  Google Scholar 

  • Jiang W, Li Z, van Dam T et al (2013) Comparative analysis of different environmental loading methods and their impacts on the GPS height time series. J Geod 87(7):687–703

    Article  Google Scholar 

  • Jiang W, Deng L, Li Z et al (2014) Effects on noise properties of GPS time series caused by higher-order ionosphericcorrections. Adv Space Res 53(7):1035–1046

    Article  Google Scholar 

  • Jiang W, Deng L, Li Z (2015) Highorder Ionospheric Effects on GPS Coordinate Time Series. Satellite Positioning - Methods, Models and Applications

    Google Scholar 

  • Jin SG, Wang J, Park PH (2005) An improvement of GPS height estimates: stochastic modelling. Earth Planets Space 57(4):253–259

    Article  Google Scholar 

  • Kedar S, Hajj GA, Wilson BD, Heflin MB (1829) The effect of the second order GPS ionosphericcorrectionon receiver positions. Geophys Res Lett 30(16):2003. doi:10.1029/2003GL017639

    Google Scholar 

  • Langbein J, Johnson H (1997) Correlated errors in geodetic time series: implications for time-dependent deformation. J Geophys Res 102:591–604

    Article  Google Scholar 

  • Langbein J (2008) Noise in GPS displacement measurements from Southern California and Southern Nevada. J Geophys Res 113:B05405. doi:10.1029/2007JB005247

    Article  Google Scholar 

  • Li Z, Jiang W, Ding W et al (2014) Estimates of minor ocean tide loading displacement and its impact on continuous GPS coordinate time series. Sensors 14(3):5552–5572

    Article  Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415

    Article  Google Scholar 

  • Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res 104(B2):2797–2816

    Article  Google Scholar 

  • Moore M, Watson C, King M et al (2014) Empirical modelling of site-specific errors in continuous GPS data. J Geod 88(9):887–900

    Article  Google Scholar 

  • Munekane H (2005) A semi-analytical estimation of the effect of second-order ionospheric correction on the GPS positioning. Geophys J Int 163(1):10–17

    Article  Google Scholar 

  • Munekane H, Boehm J (2010) Numerical simulation of troposphere-induced errors in GPS-derived geodetic time series over Japan. J Geod 84(7):405–417. doi:10.1007/s00190-010-0376-4

    Article  Google Scholar 

  • Nikolaidis R (2002) Observation of geodetic and seismic deformation with the global positioning system. Ph.D. Thesis, University of California, San Diego

  • Palamartchouk K (2010) Apparent geocenter oscillations in global navigation satellite systems solutions caused by the ionospheric effect of second order. J Geophys Res Solid Earth 115(B3):153–164

    Article  Google Scholar 

  • Penna NT, Stewart MP (2003) Aliased tidal signatures in continuous GPS height time series. Geophys Res Lett 30(23):69–73

    Article  Google Scholar 

  • Penna NT, King MA, Stewart MP (2007) GPS height time series: short-period origins of spurious long-period signals. J Geophys Res 112:B02402. doi:10.1029/2005JB004047

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS Conventions 2010. Technical Report, Verlag des Bundesamts fur Kartographie und Geodasie (France), Frankfurt am Main

  • Petrie EJ, King MA, Moore P, Lavallée DA (2010) Higher-order ionospheric effects on the GPS reference frame and velocities. J Geophys Res 115:B03417. doi:10.1029/2009JB006677

    Article  Google Scholar 

  • Petrie EJ, Hernández-Pajares M, Spalla P, Moore P, King MA (2011) A review of higher order ionospheric refraction effects on dual frequency GPS. Surv Geophys 32:197–253. doi:10.1007/s10712-010-9105-z

    Article  Google Scholar 

  • Prawirodirdjo L, Ben-Zion Y, Bock Y (2006) Observation and modeling of thermoelastic strain in Southern California integrated GPS network daily position time series. J Geophys Res 111:B02408. doi:10.1029/2005JB003716

    Article  Google Scholar 

  • Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12:55–64. doi:10.1007/s10291-007-0067-7

    Article  Google Scholar 

  • Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21(8):1897–1910

    Article  Google Scholar 

  • Rebischung P, Griffiths J, Ray J et al (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494

    Article  Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798

    Article  Google Scholar 

  • Tesmer V, Steigenberger P, Rothacher M et al (2009) Annual deformation signals from homogeneously reprocessed VLBI and GPS height time series. J Geodesy 83(10):973–988

    Article  Google Scholar 

  • Tesmer V, Steigenberger P, van Dam T et al (2011) Vertical deformations from homogeneously processed GRACE and global GPS long-term series. J Geod 85(5):291–310

    Article  Google Scholar 

  • Tregoning P, Herring TA (2006) Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33:L23303. doi:10.1029/2006GL027706

    Article  Google Scholar 

  • Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114:B09403. doi:10.1029/2009JB006344

    Google Scholar 

  • van Dam TM, Wahr J (1998) Modeling environment loading effects: a review. Phys Chem Earth 23(9):1077–1087

    Google Scholar 

  • van Dam T, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavallée D, Larson KM (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28(4):651–654

    Article  Google Scholar 

  • van Dam T, Altamimi Z, Collilieux X et al (2010) Topographically induced height errors in predicted atmospheric loading effects. J Geophys Res Atmos 115(B11):307–309

    Google Scholar 

  • Wang W, Zhao B, Wang Q et al (2012) Noise analysis of continuous GPS coordinate time series for CMONOC. Adv Space Res 49(5):943–956

    Article  Google Scholar 

  • Wang Wei, Wang Dijin, Zhao Bin et al (2014) Horizontal crustal deformation in Chinese Mainland analyzed by CMONOC GPS data from 2009–2013. Geod Geodyn 3(3):41–45

    Google Scholar 

  • Williams SDP (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series [J]. J Geod 76:483–494

    Article  Google Scholar 

  • Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res 109:B03412. doi:10.1029/2003JB002741

  • Williams SDP (2008) CATS: GPS coordinate time series analysis software. GPS Solut 12(2):147–153

    Article  Google Scholar 

  • Yan H, Chen W, Zhu Y, Zhang W, Zhong M (2009) Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophys Res Lett 36(13):L13301

    Article  Google Scholar 

  • Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Behr J (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res 102(B8):18035–18055

  • Zou R, Freymueller Jeffrey JT, Ding K et al (2014) Evaluating seasonal loading models and their impact on global and regional reference frame alignment. J Geophys Res Solid Earth 119(2):1337–1358

    Article  Google Scholar 

Download references

Acknowledgments

We thank the editors and three anonymous reviewers for their constructive comments and suggestions, which help to improve the manuscript significantly. This study made extensive use of GPS observations provided by the CMONOC and the International GNSS Service (IGS). This work was supported by the National Science Fund for Distinguished Young Scholars (Nos.: 41525014), National Natural Science Foundation of China (Nos.: 41374033), the Changjiang Scholars program, together with the Surveying and Mapping Basic Research Program of National Administration of Surveying, Mapping and Geoinformation (No.:14-02-05 and 15-02-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Jiang, W., Li, Z. et al. Assessment of second- and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GPS coordinate time series. J Geod 91, 207–227 (2017). https://doi.org/10.1007/s00190-016-0957-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0957-y

Keywords

Navigation