Skip to main content
Log in

Vertical deformations from homogeneously processed GRACE and global GPS long-term series

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Temporal variations in the geographic distribution of surface mass cause surface displacements. Surface displacements derived from GRACE gravity field coefficient time series also should be observed in GPS coordinate time series, if both time series are sufficiently free of systematic errors. A successful validation can be an important contribution to climate change research, as the biggest contributors to mass variability in the system Earth include the movement of oceanic, atmospheric, and continental water and ice. In our analysis, we find that if the signals are larger than their precision, both geodetic sensor systems see common signals for almost all the 115 stations surveyed. Almost 80% of the stations have their signal WRMS decreased, when we subtract monthly GRACE surface displacements from those observed by GPS data. Almost all other stations are on ocean islands or small peninsulas, where the physically expected loading signals are very small. For a fair comparison, the data (79 months from September 2002 to April 2009) had to be treated appropriately: the GPS data were completely reprocessed with state-of-the-art models. We used an objective cluster analysis to identify and eliminate stations, where local effects or technical artifacts dominated the signals. In addition, it was necessary for both sets of results to be expressed in equivalent reference frames, meaning that net translations between the GPS and GRACE data sets had to be treated adequately. These data sets are then compared and statistically analyzed: we determine the stability (precision) of GRACE-derived, monthly vertical deformation data to be ~1.2 mm, using the data from three GRACE processing centers. We statistically analyze the mean annual signals, computed from the GPS and GRACE series. There is a detailed discussion of the results for five overall representative stations, in order to help the reader to link the displayed criteria of similarity to real data. A series of tests were performed with the goal of explaining the remaining GPS–GRACE residuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112: B09401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Bettadpur S (2007) Gravity recovery and climate experiment, UTCSR level-2 processing standards document for level-2 product release 004. Technical report, CSR Publication, GR-03-03

  • Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2): 2103. doi:10.1029/2002JB002082

    Article  Google Scholar 

  • Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111: B02406. doi:10.1029/2005JB003629

    Article  Google Scholar 

  • Cazenave A, Llovel W (2010) Contemporary sea level rise. Ann Rev Mar Sci 2: 145–173

    Article  Google Scholar 

  • Chambers DP (2006) Observing seasonal steric sea level variations with GRACE and satellite altimetry. J Geophys Res (Oceans) 111(C10): C3010. doi:10.1029/2005JC002914

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313: 1958–1960. doi:10.1126/science.1129007

    Article  Google Scholar 

  • Chen JL, Wilson CR, Blakenship DD, Tapley BD (2006) Antarctic mass rates from GRACE. Geophys Res Lett 33: L11502. doi:10.129/2006GL026369

    Article  Google Scholar 

  • Chen JL, Wilson CR, Seo K-W (2009) S2 tide aliasing in GRACE time-variable gravity solutions. J Geod (83):679–687 doi:10.1007/s00190-008-0282-1

  • Cheng M, Tapley B (2004) Variations in the Earth’s oblateness during the past 28 years. J Geophys Res 109: B09402. doi:10.1029/2004JB003028

    Article  Google Scholar 

  • Crowley JW, Mitrovica JX, Bailey RC, Tamisiea ME, Davis JL (2008) Annual variations in water storage and precipitation in the Amazon Basin. J Geod 82(1): 9–13. doi:10.1007/s00190-007-0153-1

    Article  Google Scholar 

  • Dach, R, Hugentobler, U, Fridez, P, Meindl, M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute University of Bern, Bern

    Google Scholar 

  • Davis J, Elosegui P, Mitrovica J, Tamisiea M (2004) Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys Res Lett 31: L24605. doi:10.1029/2004GL021435

    Article  Google Scholar 

  • Dong D, Fang P, Bock Y, Cheng M, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107(B4). doi:10.1029/2001JB000573

  • Dong D, Yunck T, Heflin M (2003) Origin of the international terrestrial reference frame. J Geophys Res 108(B4): 2200. doi:10.1029/2002JB002035

    Article  Google Scholar 

  • Dow J, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3-4): 191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Drinkwater MR, Haagmans R, Muzi D, Popescu S, Floberghagen R, Kern M, Fehringer M (2007) The GOCE gravity mission: ESA’s first core earth explorer. Proceedings of third international GOCE user workshop, 6–8 November 2006, Frascati, Italy, 1–8, ESA SP-627, ISBN 92-9092-938-3

  • Ferland R (2006) IGS05 fine tuning, IGSMAIL-5455. http://igscb.jpl.nasa.gov/mail/igsmail/2006/msg00178.html

  • Flechtner F (2005) GRACE AOD1B product description document (Rev. 2.1), GRACE 327-750 (GR-GFZ-AOD-0001). GeoForschungsZentrum Potsdam, Germany

    Google Scholar 

  • Flechtner F, Dahle C, Neumayer KH, König R, Förste C (2010) The release 04 CHAMP and GRACE EIGEN gravity feld models. In: Flechtner F, Mandea M, Gruber T, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System Earth via geodetic–geophysical space techniques, advanced technologies in Earth sciences. Springer, Berlin, pp 41–58. doi:10.1007/978-3-642-10228-8_4

    Chapter  Google Scholar 

  • Freymueller JT (2009) Seasonal Position variations and regional reference frame realization. In: Drewes H (ed) Geodetic reference frames, IAG Symposium Munich, Germany, 9–14 October 2006, International Association of Geodesy Symposia, vol 134, Springer, pp 191–196. doi:10.1007/978-3-642-00860-3_30

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32: L23311. doi:10.1029/2005GL024342

    Article  Google Scholar 

  • Han D, Wahr J (1995) The viscoelastic relaxation of a realistically stratified Earth, and a further analysis of postglacial rebound. Geophys J Int 120(2): 287–311. doi:10.1111/j.1365-246X.1995.tb01819.x

    Article  Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2007) GNSS—global navigation satellite systems: GPS, GLONASS, Galileo & more, 1st edn. Springer, Vienna

    Google Scholar 

  • Horwath M, Rülke A, Fritsche M, Dietrich R (2010) Mass variation signals in GRACE products and in crustal deformations from GPS: a comparison. In: Flechtner F, Mandea M, Gruber T, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System Earth via geodetic–geophysical space techniques, advanced technologies in earth sciences. Springer, Berlin, pp 399–406. doi:10.1007/978-3-642-10228-8_34

    Chapter  Google Scholar 

  • Jaldehag RTK, Johansson JM, Rönnäng BO, Elósegui P, Davis JL, Shapiro II, Niell A (1996) Geodesy using the Swedish permanent GPS network: Effects of signal scattering on estimates of relative site positions. J Geophys Res 101(B8): 1601–1604

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77: 437–470

    Article  Google Scholar 

  • Kaniuth K, Stuber K, Vetter S (2005) Sensitivität von GPS-Höhenbestimmungen gegen Akkumulation von Schnee auf der Antenne. AVN 112(8–9): 290–295

    Google Scholar 

  • King M, Moore P, Clarke P, Lavallée D (2006) Choice of optimal averaging radii for temporal GRACE gravity solutions, a comparison with GPS and satellite altimetry. Geophys J Int 166(1): 1–11. doi:10.1111/j.1365-246X.2006.03017.x

    Article  Google Scholar 

  • Kuo C-Y, Shum CK, Guo J, Yi Y, Braun A, Fukumori I, Matsumoto K, Sato T, Shibuya K (2008) Southern ocean mass variation studies using GRACE and satellite altimetry. Earth Planets Space 60(5): 477–485

    Google Scholar 

  • Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81(11): 733–749. doi:10.1007/s00190-007-0143-3

    Article  Google Scholar 

  • Lavallee DA, van Dam T, Blewitt G, Clarke PJ (2006) Geocenter motions from GPS: a unified observation model. J Geophys Res 111: B05405. doi:10.1029/2005JB003784

    Article  Google Scholar 

  • Leuliette EW, Miller L (2009) Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett 36: L04608. doi:10.1029/2008GL036010

    Article  Google Scholar 

  • Luthcke SB, Arendt AA, Rowlands DS, McCarthy JJ, Larsen CF (2008) Recent glacier mass changes in the Gulf of Alaska from GRACE mascon solutions. J Glaciol 54(188): 767–777. doi:10.3189/002214308787779933

    Article  Google Scholar 

  • McCarthy D, Petit G (2004) IERS conventions (2003), IERS technical note no. 32, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, ISBN 3-89888-884-3

  • Morison J, Wahr J, Kwok R, Peralta-Ferriz C (2007) Recent trends in Arctic Ocean mass distribution revealed by GRACE. Geophys Res Lett 34: L7602. doi:10.1029/2006GL029016

    Article  Google Scholar 

  • Niell AE (2001) Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys Chem Earth 26(6–8): 475–480. doi:10.1016/S1464-1895(01)00087-4

    Google Scholar 

  • Nordman M, Mäkinen J, Virtanen H, Johansson JM, Bilker-Koivula M, Virtanen J (2009) Crustal loading in vertical GPS time series in Fennoscandia. J Geodyn 48(3–5): 144–150. doi:10.1016/j.jog.2009.09.003

    Article  Google Scholar 

  • Penna N, King MA, Stewart MP (2007) GPS height time series: short-period origins of spurious long-period signals. J Geophys Res 112: B02402. doi:10.1029/2005JB004047

    Article  Google Scholar 

  • Prawirodirdjo L, Ben-Zion Y, Bock Y (2006) Observation and modeling of thermoelastic strain in Southern California Integrated GPS Network daily position time series. J Geophys Res 111: B02408. doi:10.1029/2005JB003716

    Article  Google Scholar 

  • Ray J, Altamimi Z, Collilieux X, Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Sol 12(1): 55–64. doi:10.1007/s10291-007-0067-7

    Article  Google Scholar 

  • Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30(2): 129–134. doi:10.1016/S0273-1177(02)00276-4

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti J (2009) Satellite-based estimates of groundwater depletion in India. Nature 460: 999–1002. doi:10.1038/nature08238

    Article  Google Scholar 

  • Romagnoli C, Zerbini S, Lago L, Richter B, Simon D, Domenichini F, Elmi C, Ghirotti M (2003) Influence of soil consolidation and thermal expansion effects on height and gravity variations. J Geodyn 35(4–5): 521–539. doi:10.1016/S0264-3707(03)00012-7

    Article  Google Scholar 

  • Rothacher M, Angermann D, Artz T, Bosch W, Drewes H, Böckmann S, Gerstl M, Kelm R, König D, König R, Meisel B, Müller H, Nothnagel A, Panafidina N, Richter B, Rudenko S, Schwegmann W, Seitz M, Steigenberger P, Tesmer V, Thaller D (2011) GGOS-D: homogeneous reprocessing and rigorous combination of space geodetic techniques (submitted to J Geod)

  • Schillak S (2004) Analysis of the process of the determination of station coordinates by the satellite laser ranging based on results of the Borowiec SLR station in 1993.5 - 2000.5, Part 1: Performance of the Satellite Laser Ranging. Artif Satellites 39(3): 217–263

    Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12): 781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Simmons A, Gibson J (2000) The ERA-40 Project Plan. ERA-40 Project Report Series 1, ECMWF

  • Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Modern Phys 70(4): 1393–1454. doi:10.1103/RevModPhys.70.1393

    Article  Google Scholar 

  • Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111: B05402. doi:10.1029/2005JB003747

    Article  Google Scholar 

  • Steigenberger P, Boehm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod 83(10): 943–951. doi:10.1007/s00190-009-0311-8

    Article  Google Scholar 

  • Steigenberger P, Artz T, Böckmann S, Kelm R, König R, Meisel B, Müller H, Nothnagel A, Rudenko S, Tesmer V, Thaller D (2010) GGOS-D consistent, high-accuracy technique-specific solutions. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System Earth via geodetic–geophysical space techniques, advanced technologies in Earth sciences. Springer, Berlin, pp 545–554. doi:10.1007/978-3-642-10228-8_45

    Chapter  Google Scholar 

  • Takiguchi H, Otsubo T, Fukuda Y (2006) Mass-redistribution-induced crustal deformation of global satellite laser ranging stations due to non-tidal ocean and land water circulation. Earth Planets Space 58(12): E13–E16

    Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31: L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Tesmer V, Steigenberger P, Rothacher M, Boehm J, Meisel B (2009) Annual deformation signals from homogeneously reprocessed VLBI and GPS height time series. J Geod 83(10): 973–988. doi:10.1007/s00190-009-0316-3

    Article  Google Scholar 

  • Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett 36: L15401. doi:10.1029/2009GL038718

    Article  Google Scholar 

  • van Dam T, Wahr J, Lavallée D (2007) A comparison of annual vertical crustal displacements from GPS and Gravity recovery and climate experiment (GRACE) over Europe. J Geophys Res 112: B03404. doi:10.1029/2006JB004335

    Article  Google Scholar 

  • Velicogna I, Wahr J (2006) Acceleration of Greenland ice-mass loss in Spring 2004. Nature 443: 329–331. doi:10.1038/nature05168

    Article  Google Scholar 

  • Velicogna I, Wahr J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science 311: 1754–1756. doi:10.1126/science.1123785

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12): 30,205–30,229. doi:10.1029/98JB02844

    Article  Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31: L11501. doi:10.1029/2004GL019779

    Article  Google Scholar 

  • Watkins M, Yuan DN (2007) JPL level-2 processing standards document for level-2 product release 04, ftp://podaac.jpl.nasa.gov/pub/grace/doc/L2-JPL_ProcStds_v4.1.pdf

  • Williams SD, Bock Y, Fang P, Jamason P, Nikolaidis R M, Prawirodirdjo L, Miller M, Johnson D J (2004) Error analysis of continuous GPS position time series. J Geophys Res 109: B03412. doi:10.1029/2003JB002741

    Article  Google Scholar 

  • Willis JK, Chambers DP, Nerem RS (2008) Assessing the globally averaged sea level budget on seasonal to interannual timescales. J Geophys Res 113: C06015. doi:10.1029/2007JC004517

    Article  Google Scholar 

  • Yan H, Chen W, Zhu Y, Zhang W, Zhong M (2009) Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophys Res Lett 36: L13301. doi:10.1029/2009GL038152

    Article  Google Scholar 

  • Zerbini S, Matonti F, Raicich F, Richter B, van Dam T (2004) Observing and assessing nontidal ocean loading using ocean, continuous GPS and gravity data in the Adriatic area. Geophys Res Lett 31: L23609. doi:10.1029/2004GL021185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Tesmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesmer, V., Steigenberger, P., van Dam, T. et al. Vertical deformations from homogeneously processed GRACE and global GPS long-term series. J Geod 85, 291–310 (2011). https://doi.org/10.1007/s00190-010-0437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0437-8

Keywords

Navigation