Skip to main content
Log in

Extracting tidal frequencies using multivariate harmonic analysis of sea level height time series

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This contribution is seen as a first attempt to extract the tidal frequencies using a multivariate spectral analysis method applied to multiple time series of tide-gauge records. The existing methods are either physics-based in which the ephemeris of Moon, Sun and other planets are used, or are observation-based in which univariate analysis methods—Fourier and wavelet for instance—are applied to tidal observations. The existence of many long tide-gauge records around the world allows one to use tidal observations and extract the main tidal constituents for which efficient multivariate methods are to be developed. This contribution applies the multivariate least-squares harmonic estimation (LS-HE) to the tidal time series of the UK tide-gauge stations. The first 413 harmonics of the tidal constituents and their nonlinear components are provided using the multivariate LS-HE. A few observations of the research are highlighted: (1) the multivariate analysis takes information of multiple time series into account in an optimal least- squares sense, and thus the tidal frequencies have higher detection power compared to the univariate analysis. (2) Dominant tidal frequencies range from the long-term signals to the sixth-diurnal species interval. Higher frequencies have negligible effects. (3) The most important tidal constituents (the first 50 frequencies) ordered from their amplitudes range from 212 cm (M2) to 1 cm (OQ2) for the data set considered. There are signals in this list that are not available in the 145 main tidal frequencies of the literature. (4) Tide predictions using different lists of tidal frequencies on five different data sets around the world are compared. The prediction results using the first significant 50 constituents provided promising results on these locations of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amiri-Simkooei AR (2007) Least-squares variance component estimation: theory and GPS applications. Ph.D. thesis, Mathematical Geodesy and Positioning, Faculty of Aerospace Engineering, Delft University of Technology, Delft

  • Amiri-Simkooei AR, Tiberius CCJM, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res 112:B07413. doi:10.1029/2006JB004913

    Google Scholar 

  • Amiri-Simkooei AR, Tiberius CCJM (2007) Assessing receiver noise using GPS short baseline time series. GPS Solut 11(1):21–35

    Article  Google Scholar 

  • Amiri-Simkooei AR (2009) Noise in multivariate GPS position time series. J Geod Berlin 83:175–187

    Article  Google Scholar 

  • Amiri-Simkooei AR, Asgari J (2012) Harmonic analysis of total electron contents time series: methodology and results. GPS Solut 16(1):77–88

    Article  Google Scholar 

  • Büllesfeld FJ (1985) Ein Beitrag zur harmonischenDarstellung des gezeitenerzeugenden Potentials. Reihe C, Heft 314, Deutsche GeodätischeKommission, München

  • Capuano P, De Lauro E, De Martino S, Falanga M (2011) Waterlevel oscillations in the Adriatic Sea as coherent selfoscillations inferred by independent component analysis. Progr Oceanogr 91:447460

    Article  Google Scholar 

  • Cartwright DE, Edden AC (1973) Corrected tables of tidal harmonics. Geophys J R Astron Soc 33:253–264

    Article  Google Scholar 

  • Cartwright DE, Tayler RJ (1971) New computation of the tide generating potential. Geophys J R AstronSoc 23:45–74

    Article  Google Scholar 

  • Doodson AT (1921) The harmonic development of the tide generating potential. Proc R Soc Lond A 100:305–329

    Article  Google Scholar 

  • Doodson AT (1954) Re-print of above, with minor corrections, same title. Znt Hydrog Rev 31:11–35

    Google Scholar 

  • Ducarme B, Venedilkov AP, de Mesquita AR, Costa DS, Blitzkow D, Vieira R, Freitas SRC (2006a) New analysis of a 50 years tide guage record at Cananéia (SP-Brazil) with the VAV tidal analysis program. Dynamic Planet, Cairns, Australia, 22–26 August, 2005. Springer, IAG Symposia 130:453–460

  • Ducarme B, Venedikov AP, Arnoso J, Vieira R (2006b) Analysis and prediction of ocean tides by the computer program VAV. In: Proceedings of 15th international symposium on earth tides, Journal of Geodynamics 41:119–127

  • Flinchem EP, Jay DA (2000) An introduction to wavelet transform tidal analysis methods. Estuar Coast Shelf Sci 51:177200

    Article  Google Scholar 

  • Hartmann T, Wenzel HG (1994) The harmonic development of the earth tide generating potential due to the direct effect of the planets. J Geophys Res Lett 21:1991–1993

    Article  Google Scholar 

  • Hartmann T, Wenzel HG (1995) The HW95 tidal potential catalogue. J Geophys Res Lett 22:3553–3556

    Article  Google Scholar 

  • Hyvarinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New York

    Book  Google Scholar 

  • Jay DA, Kukulka J (2003) Revising the paradigm of tidal analysis the uses of nonstationary. Ocean Dyn 53:110125

    Article  Google Scholar 

  • Kudryavtsev SM (2004) Improved harmonic development of the earth tide-generating potential. J Geod 77:829–838

    Article  Google Scholar 

  • Magnus JR (1988) Linear structures. Oxford University Press, London School of Economics and Political Science, Charles Griffin & Company LTD, London

  • Mousavian R, Mashhadi-Hossainali M (2012) Detection of main tidal frequencies using least squares harmonic estimation method. J Geod Sci 2(3):224–233

    Google Scholar 

  • Mousavian R, Mashhadi-Hossainali M (2013) Geodetic constraints on the period of episodic tremors and slips using least squares harmonic estimation method with application to cascadia subduction zone. Acta Geophys. doi:10.2478/s11600-013-0173-6

  • Pytharouli S, Stiros S (2008) Spectral analysis of unevenly spaced or discontinuous data using the ‘normperiod’ code’. Comput Struct 86:190–196

  • Pytharouli S, Stiros S (2012) Analysis of short and discontinuous tidal data: a case study from the Aegean Sea. Surv Rev. doi:10.1179/1752270611Y.0000000035

  • Roosbeek F (1996) RATGP95: a harmonic development of the tide-generating potential using an analytical method. Geophys J Int 126:197–204

  • Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. D. Reidel Publishing Company, Tokyo 290 pp

    Google Scholar 

  • Sharifi MA, Sam Khaniani A (2013) Least-squares harmonic estimation of the tropopause parameters using GPS radio occultation measurements. Meteorol Atmos Phys 120(1–2):73–82

    Article  Google Scholar 

  • Sharifi MA, Safari A, Masoumi S (2012) Harmonic analysis of the ionospheric electron densities retrieved from FORMOSAT-3/COSMIC radio occultation measurements. Adv Space Res 49(10):1520–1528

  • Tamura Y (1987) A harmonic development of the tide-generating potential. Bull Inf Mar Terrest 99:6813–6855

    Google Scholar 

  • Tamura Y (1995) Additional terms to the tidal harmonic tables. In: Hsu HT (ed) Proceedings of 12th international aymposium earth tides. Science Press, Beijing, pp 345–350

  • Teunissen PJG (2000a) Testing theory: an introduction. Series on Mathematical Geodesy and Positioning. Delft University Press. http://www.vssd.nl

  • Teunissen PJG (2000b) Adjustment theory: an introduction. Series on Mathematical Geodesy and Positioning, Delft University Press. http://www.vssd.nl

  • Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J Geod 82(2):65–82. doi:10.1007/s00190-007-0157-x

  • Teunissen PJG, Simons DG, Tiberius CCJM (2005) Probability and observation theory, Faculty of Aerospace Engineering, Delft University, Delft University of Technology (lecture notes AE2-E01)

  • Venedikov AP, Arnoso J, Vieira R (2001) Program VAV/2000 for tidal analysis of unevenly spaced data with irregular drift and colored noise. J Geodetic Soc Jpn 47(1):281–286

    Google Scholar 

  • Venedikov AP, Arnoso J, Vieira R (2003) VAV: a program for tidal data processing. Comput Geosci 29:487–502

    Article  Google Scholar 

  • Venedikov AP, Arnoso J, Vieira R (2005) New version of the program VAV for tidal data processing. Comput Geosci 31:667–669

    Article  Google Scholar 

  • Xi QW (1987) A new complete development of the tide-generating potential for the epoch J2000.0. Bull Inf Mar Terrest 99:6766–6812

    Google Scholar 

  • Xi QW (1989) The precision of the development of the tidal generating potential and some explanatory notes. Bull Inf Mar Terrest 105:7396–7404

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the British Oceanographic Data Center (BODC) for its free tide data we used in this paper. Useful comments of the editor-in-chief and anonymous reviewers are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zaminpardaz.

Appendices

Appendix A: UK tide-gauge stations’ names and coordinates

No.

St. name

Latitude (\(^\circ \))

Longitude (\(^\circ \))

No.

St. name

Latitude (\(^\circ \))

Longitude (\(^\circ \))

1

Aberdeen

57.1440

\(-\)2.0803

24

Milford Haven

51.7064

\(-\)5.0514

2

Avonmouth

51.5108

\(-\)2.7151

25

Millport

55.7496

\(-\)4.9058

3

Bangor

54.6648

\(-\)5.6695

26

Moray firth

57.5992

\(-\)4.0002

4

Barmouth

52.7193

\(-\)4.0450

27

Mumbles

51.5703

\(-\)3.9749

5

Bournemouth

50.7143

\(-\)1.8749

28

Newhaven

50.7818

0.0570

6

Cromer

52.9343

1.3016

29

Newlyn

50.1030

\(-\)5.5428

7

Devonport

50.3684

\(-\)4.1853

30

Newport

51.5500

\(-\)2.9874

8

Dover

51.1144

1.3225

31

North Shields

55.0074

\(-\)1.4398

9

Felixstowe

51.9577

1.3466

32

Port Ellen

55.6276:

\(-\)6.1899

10

Fishguard

52.0137

\(-\)4.9832

33

Port Erin

54.0852

\(-\)4.7681

11

Harwich

51.9480

1.2921

34

Port Patric

54.8426

\(-\) 5.1200

12

Heysham

54.0318

\(-\)2.9203

35

Portrush

55.2068

\(-\)6.6568

13

Hinkley point

51.2153

\(-\)3.1345

36

Portsmooth

50.8026

\(-\)1.1118

14

Holyhead

53.3139

\(-\)4.6206

37

St Mary

49.9185

\(-\)6.3165

15

Ilfracombe

51.2109

\(-\)4.1111

38

Sheerness

51.4456

0.7434

16

Immingham

53.6310

\(-\)0.1868

39

Stornoway

58.2070

\(-\)6.3889

17

St. Helier

49.1833

\(-\)2.1167

40

Tobermory

56.6229

\(-\)6.0640

18

Kinlochbervie

58.4567

\(-\)5.0504

41

Ullapool

57.8953

\(-\)5.1581

19

Leith

55.9898

\(-\)3.1817

42

Waymouth

50.6085

\(-\)2.4479

20

Lerwick

60.154

\(-\)1.1403

43

Whitby

54.4894

\(-\)0.6199

21

Liverpool

53.4497

\(-\)3.0181

44

Wick

58.4410

\(-\)3.0865

22

Llandudno

53.3317

\(-\)3.8252

45

Workington

54.6508

\(-\)3.5678

23

Lowestoft

52.4820

1.7516

    
Table 6 Tidal frequencies (most important constituents) detected by least-squares power spectrum of 18.24-year multivariate time series (11 series used) that have approximately the same effect as tide prediction using the entire 413 frequencies in Tables 1 and 2

Appendix B: different lists of tidal frequencies

See Appendix Tables 45 and 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri-Simkooei, A.R., Zaminpardaz, S. & Sharifi, M.A. Extracting tidal frequencies using multivariate harmonic analysis of sea level height time series. J Geod 88, 975–988 (2014). https://doi.org/10.1007/s00190-014-0737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0737-5

Keywords

Navigation