Skip to main content

Identifying the Best Performing Time Series Analytics for Sea Level Research

  • Conference paper
  • First Online:
Time Series Analysis and Forecasting

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

One of the most critical environmental issues confronting mankind remains the ominous spectre of climate change, in particular, the pace at which impacts will occur and our capacity to adapt. Sea level rise is one of the key artefacts of climate change that will have profound impacts on global coastal populations. Although extensive research has been undertaken into this issue, there remains considerable scientific debate about the temporal changes in mean sea level and the climatic and physical forcings responsible for them. This research has specifically developed a complex synthetic data set to test a wide range of time series methodologies for their utility to isolate a known non-linear, non-stationary mean sea level signal. This paper provides a concise summary of the detailed analysis undertaken, identifying Singular Spectrum Analysis (SSA) and multi-resolution decomposition using short length wavelets as the most robust, consistent methods for isolating the trend signal across all length data sets tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGranahan, G., Balk, D., Anderson, B.: The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19(1), 17–37 (2007)

    Article  Google Scholar 

  2. Nicholls, R.J., Cazenave, A.: Sea-level rise and its impact on coastal zones. Science 328(5985), 1517–1520 (2010)

    Article  Google Scholar 

  3. Watson, P.J.: Development of a unique synthetic data set to improve sea level research and understanding. J. Coast. Res. 31(3), 758–770 (2015)

    Article  Google Scholar 

  4. Baart, F., van Koningsveld, M., Stive, M.: Trends in sea-level trend analysis. J. Coast. Res. 28(2), 311–315 (2012)

    Article  Google Scholar 

  5. Donoghue, J.F., Parkinson, R.W.: Discussion of: Houston, J.R. and Dean, R.G., 2011. Sea-level acceleration based on U.S. tide gauges and extensions of previous global-gauge analyses. J. Coast. Res. 27(3), 409–417; J. Coast. Res, 994–996 (2011)

    Google Scholar 

  6. Houston, J.R., Dean, R.G.: Sea-level acceleration based on U.S. tide gauges and extensions of previous global-gauge analyses. J. Coast. Res. 27(3), 409–417 (2011)

    Article  Google Scholar 

  7. Houston, J.R., Dean, R.G.: Reply to: Rahmstorf, S. and Vermeer, M., 2011. Discussion of: Houston, J.R. and Dean, R.G., 2011. Sea-level acceleration based on U.S. tide gauges and extensions of previous global-gauge analyses. J. Coast. Res. 27(3), 409–417; J. Coast. Res., 788–790 (2011)

    Google Scholar 

  8. Rahmstorf, S., Vermeer, M.: Discussion of: Houston, J.R. and Dean, R.G., 2011. Sea-level acceleration based on U.S. tide gauges and extensions of previous global-gauge analyses. J. Coast. Res. 27(3), 409–417; J. Coast. Res., 784–787 (2011)

    Google Scholar 

  9. Watson, P.J.: Is there evidence yet of acceleration in mean sea level rise around Mainland Australia. J. Coast. Res. 27(2), 368–377 (2011)

    Article  Google Scholar 

  10. IPCC: Summary for policymakers. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  11. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, E.H., Zheng, Q., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(01), 1–41 (2009)

    Article  Google Scholar 

  13. Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Physica D 20(2), 217–236 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golyandina, N., Nekrutkin, V., Zhigljavsky, A.A.: Analysis of Time Series Structure: SSA and Related Techniques. Chapman and Hall/CRC, Boca Raton, FL (2001)

    Book  MATH  Google Scholar 

  15. Vautard, R., Ghil, M.: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35(3), 395–424 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

    Book  MATH  Google Scholar 

  17. Grossmann, A., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15(4), 723–736 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grossmann, A., Kronland-Martinet, R., Morlet, J.: Reading and understanding continuous wavelet transforms. In: Combes, J.-M., Grossmann, A., Tchamitchian, P. (eds.) Wavelets, pp.~2–20. Springer, Heidelberg (1989)

    Google Scholar 

  19. Tary, J.B., Herrera, R.H., Han, J., Baan, M.: Spectral estimation—What is new? What is next? Rev. Geophys. 52, 723–749 (2014)

    Article  Google Scholar 

  20. Han, J., van der Baan, M.: Empirical mode decomposition for seismic time-frequency analysis. Geophysics 78(2), O9–O19 (2013)

    Article  Google Scholar 

  21. Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P.: A complete ensemble empirical mode decomposition with adaptive noise. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal (ICASSP), May 22–27, 2011, Prague Congress Center Prague, Czech Republic, pp. 4144–4147 (2011)

    Google Scholar 

  22. Daubechies, I., Lu, J., Wu, H.T.: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30(2), 243–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Thakur, G., Brevdo, E., Fučkar, N.S., Wu, H.T.: The synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications. Signal Process. 93(5), 1079–1094 (2013)

    Article  Google Scholar 

  24. Bindoff, N.L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J., Gulev, S., Hanawa, K., Le Quéré, C., Levitus, S., Nojiri, Y., Shum, C.K., Talley, L.D., Unnikrishnan, A.: Observations: oceanic climate change and sea level. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  25. Woodworth, P.L., White, N.J., Jevrejeva, S., Holgate, S.J., Church, J.A., Gehrels, W.R.: Review—evidence for the accelerations of sea level on multi-decade and century timescales. Int. J. Climatol. 29, 777–789 (2009)

    Article  Google Scholar 

  26. Wood, S.: Generalized Additive Models: An Introduction with R. CRC, Boca Raton, FL (2006)

    MATH  Google Scholar 

  27. O'Sullivan, F.: A statistical perspective on ill-posed inverse problems. Stat. Sci. 1(4), 502–527 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. O’Sullivan, F.: Fast computation of fully automated log-density and log-hazard estimators. SIAM J. Sci. Stat. Comput. 9(2), 363–379 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2), 89–102 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zeileis, A., Grothendieck, G.: Zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14(6), 1–27 (2005)

    Article  Google Scholar 

  31. Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6(1), 3–73 (1990)

    Google Scholar 

  32. Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods (No. 38). Oxford University Press, Oxford (2012)

    Book  MATH  Google Scholar 

  33. GRETL.: Gnu Regression, Econometrics and Time series Library (GRETL). http://www.gretl.sourceforge.net/ (2014)

  34. Golyandina, N., Korobeynikov, A.: Basic singular spectrum analysis and forecasting with R. Comput. Stat. Data Anal. 71, 934–954 (2014)

    Article  MathSciNet  Google Scholar 

  35. Kim, D., Oh, H.S.: EMD: a package for empirical mode decomposition and Hilbert spectrum. R J. 1(1), 40–46 (2009)

    Google Scholar 

  36. Kim, D., Kim, K.O., Oh, H.S.: Extending the scope of empirical mode decomposition by smoothing. EURASIP J. Adv. Signal Process 2012(1), 1–17 (2012)

    Article  Google Scholar 

  37. Bowman, D.C., Lees, J.M.: The Hilbert–Huang transform: a high resolution spectral method for nonlinear and nonstationary time series. Seismol. Res. Lett. 84(6), 1074–1080 (2013)

    Article  Google Scholar 

  38. Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis (Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  39. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. R Core Team.: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/ (2014)

  41. Mandic, D.P., Rehman, N.U., Wu, Z., Huang, N.E.: Empirical mode decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis. IEEE Signal Process Mag. 30(6), 74–86 (2013)

    Article  Google Scholar 

  42. Alexandrov, T., Golyandina, N.: Automatic extraction and forecast of time series cyclic components within the framework of SSA. In: Proceedings of the 5th St. Petersburg Workshop on Simulation, June, St. Petersburg, pp. 45–50 (2005)

    Google Scholar 

  43. Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Yiou, P.: Advanced spectral methods for climatic time series. Rev. Geophys. 40(1), 3–1 (2002)

    Article  Google Scholar 

  44. Moore, J.C., Grinsted, A., Jevrejeva, S.: New tools for analyzing time series relationships and trends. Eos. Trans. AGU 86(24), 226–232 (2005)

    Article  Google Scholar 

  45. Church, J.A., White, N.J., Coleman, R., Lambeck, K., Mitrovica, J.X.: Estimates of the regional distribution of sea level rise over the 1950–2000 period. J. Clim. 17(13), 2609–2625 (2004)

    Article  Google Scholar 

  46. Church, J.A., White, N.J.: A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 33(1), L01602 (2006)

    Article  Google Scholar 

  47. Church, J.A., White, N.J.: Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32(4-5), 585–602 (2011)

    Article  Google Scholar 

  48. Domingues, C.M., Church, J.A., White, N.J., Gleckler, P.J., Wijffels, S.E., Barker, P.M., Dunn, J.R.: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453(7198), 1090–1093 (2008)

    Article  Google Scholar 

  49. Hendricks, J.R., Leben, R.R., Born, G.H., Koblinsky, C.J.: Empirical orthogonal function analysis of global TOPEX/POSEIDON altimeter data and implications for detection of global sea level rise. J. Geophys. Res. Oceans (1978–2012), 101(C6), 14131–14145 (1996)

    Google Scholar 

  50. Jevrejeva, S., Moore, J.C., Grinsted, A., Woodworth, P.L.: Recent global sea level acceleration started over 200 years ago? Geophys. Res. Lett. 35(8), L08715 (2008)

    Article  Google Scholar 

  51. Meyssignac, B., Becker, M., Llovel, W., Cazenave, A.: An assessment of two-dimensional past sea level reconstructions over 1950–2009 based on tide-gauge data and different input sea level grids. Surv. Geophys. 33(5), 945–972 (2012)

    Article  Google Scholar 

  52. Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61–78 (1998)

    Article  Google Scholar 

  53. Percival, D.B., Mofjeld, H.O.: Analysis of subtidal coastal sea level fluctuations using wavelets. J. Am. Stat. Assoc. 92(439), 868–880 (1997)

    Article  MATH  Google Scholar 

  54. Hassani, H., Mahmoudvand, R., Zokaei, M.: Separability and window length in singular spectrum analysis. Comptes Rendus Mathematique 349(17), 987–990 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The computing resources required to facilitate this research have been considerable. It would not have been possible to undertake the testing program without the benefit of access to high performance cluster computing systems. In this regard, I am indebted to John Zaitseff and Dr Zavier Barthelemy for facilitating access to the “Leonardi” and “Manning” systems at the Faculty of Engineering, University of NSW and Water Research Laboratory, respectively.

Further, this component of the research has benefitted significantly from direct consultations with some of the world’s leading time series experts and developers of method specific analysis tools. Similarly, I would like to thank the following individuals whose contributions have helped considerably to shape the final product and have ranged from providing specific and general expert advice, to guidance and review (in alphabetical order): Daniel Bowman (Department of Geological Sciences, University of North Carolina at Chapel Hill); Dr Eugene Brevdo (Research Department, Google Inc, USA); Emeritus Professor Dudley Chelton (College of Earth, Ocean and Atmospheric Sciences, Oregon State University, USA); Associate Professor Nina Golyandina (Department of Statistical Modelling, Saint Petersburg State University, Russia); Professor Rob Hyndman (Department of Econometrics and Business Statistics, Monash University, Australia); Professor Donghoh Kim (Department of Applied Statistics, Sejong University, South Korea); Alexander Shlemov (Department of Statistical Modelling, Saint Petersburg State University, Russia); Associate Professor Anton Korobeynikov (Department of Statistical Modelling, Saint Petersburg State University, Russia); Emeritus Professor Stephen Pollock (Department of Economics, University of Leicester, UK); Dr Natalya Pya (Department of Mathematical Sciences, University of Bath, UK); Dr Andrew Robinson (Department of Mathematics and Statistics, University of Melbourne, Australia); and Professor Ashish Sharma (School of Civil and Environmental Engineering, University of New South Wales, Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil. J. Watson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Watson, P.J. (2016). Identifying the Best Performing Time Series Analytics for Sea Level Research. In: Rojas, I., Pomares, H. (eds) Time Series Analysis and Forecasting. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-28725-6_20

Download citation

Publish with us

Policies and ethics