Skip to main content
Log in

GGOS-D: homogeneous reprocessing and rigorous combination of space geodetic observations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In preparation of activities planned for the realization of the Global Geodetic Observing System (GGOS), a group of German scientists has carried out a study under the acronym GGOS-D which closely resembles the ideas behind the GGOS initiative. The objective of the GGOS-D project was the investigation of the methodological and information-technological realization of a global geodetic-geophysical observing system and especially the integration and combination of the space geodetic observations. In the course of this project, highly consistent time series of GPS, VLBI, and SLR results were generated based on common state-of-the-art standards for modeling and parameterization. These series were then combined to consistently and accurately compute a Terrestrial Reference Frame (TRF). This TRF was subsequently used as the basis to produce time series of station coordinates, Earth orientation, and troposphere parameters. In this publication, we present results of processing algorithms and strategies for the integration of the space-geodetic observations which had been developed in the project GGOS-D serving as a prototype or a small and limited version of the data handling and processing part of a global geodetic observing system. From a comparison of the GGOS-D terrestrial reference frame results and the ITRF2005, the accuracy of the datum parameters is about 5–7 mm for the positions and 1.0–1.5 mm/year for the rates. The residuals of the station positions are about 3 mm and between 0.5 and 1.0 mm/year for the station velocities. Applying the GGOS-D TRF, the offset of the polar motion time series from GPS and VLBI is reduced to 50 μas (equivalent to 1.5 mm at the Earth’s surface). With respect to troposphere parameter time series, the offset of the estimates of total zenith delays from co-located VLBI and GPS observations for most stations in this study is smaller than 1.5 mm. The combined polar motion components show a significantly better WRMS agreement with the IERS 05C04 series (96.0/96.0 μas) than VLBI (109.0/100.7 μas) or GPS (98.0/99.5 μas) alone. The time series of the estimated parameters have not yet been combined and exploited to the extent that would be possible. However, the results presented here demonstrate that the experiences made by the GGOS-D project are very valuable for similar developments on an international level as part of the GGOS development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112: B9401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm M, Müller H, Seemüller W, Tesmer V (2004) ITRS combination center at DGFI—a terrestrial reference frame realization 2003. In: DGK Reihe B, vol 313. Deutsche Geodätische Kommission, München

  • Angermann D, Drewes H, Krügel M, Meisel B (2007) Advances in terrestrial reference frame computations. In: Tregoning P, Rizos C (eds) Dynamic Planet. IAG Symposia, vol 130. Springer, Berlin, pp 595–602. doi:10.1007/978-3-540-49350-1_86

    Google Scholar 

  • Bizouard C, Gambis D (2009) The combined solution C04 for earth orientation parameters consistent with International Terrestrial Reference Frame 2005. In: Drewes H (eds) Geodetic Reference Frames. IAG Symposia, vol 134. Springer, Berlin, pp 265–270. doi:10.1007/978-3-642-00860-3_41

    Chapter  Google Scholar 

  • Blewitt G, Bock Y, Kouba J (1994) Constraining the IGS polyhedron by distributed processing. In: IGS Workshop Proceedings: densification of ITRF through regional GPS networks. JPL, Pasadena, pp 21–37

  • Böckmann S, Artz T, Nothnagel A, Tesmer V (2007) Comparison and combination of consistent VLBI solutions. In: Proceedings of the 18th European VLBI for Geodesy and Astrometry Working Meeting, no. 79 in Geowissenschaftliche Mittteilungen, pp 82–87

  • Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84(3): 201–219. doi:10.1007/s00190-009-0357-7

    Article  Google Scholar 

  • Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111: B02406. doi:10.1029/2005JB003629

    Article  Google Scholar 

  • Bosch W (1997) Geoid and orbit corrections from crossover satellite altimetry. Tech Rep 60/97, Deutsches Geodätisches Forschungsinstiut, München

  • Bray T, Paoli J, Sperberg-McQueen C, Maler E, Yergeau F, Cowan J (2006) Extensible Markup Language (XML) 1.1, 2nd edn. W3C recommendation 16 August 2006, edited in place 29 September 2006 ed. http://www.w3.org/TR/2006/REC-xml11-20060816

  • Brunner F, Rüeger J (1992) Theory of the local scale parameter method for EDM. Bull Geod 66(4): 355–364. doi:10.1007/BF00807420

    Article  Google Scholar 

  • Dach, R, Hugentobler, U, Fridez, P, Meindl, M (eds) (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, Bern

    Google Scholar 

  • Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4): 191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Drewes H, Angermann D, Gerstl M, Krügel M, Meisel B, Seemüller W (2006) Analysis and refined computations of the International Terrestrial Reference Frame. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the Earth system from space. Springer, Berlin, pp 343–356. doi:10.1007/3-540-29522-4_23

    Chapter  Google Scholar 

  • Elgered G, Davis J, Herring T, Shapiro I (1991) Geodesy by radio interferometry: water vapor radiometry for estimation of the wet delay. J Geophys Res 96(B4): 6541–6555. doi:10.1029/90JB00834

    Article  Google Scholar 

  • Feissel-Vernier M (2003) Selecting stable extragalactic compact radio sources from the permanent astrogeodetic VLBI program. A&A 403(1): 105–110. doi:10.1051/0004-6361:20030348

    Article  Google Scholar 

  • Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine J-M, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82(6): 331–346. doi:10.1007/s00190-007-0183-8

    Article  Google Scholar 

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32: L23311. doi:10.1029/2005GL024342

    Article  Google Scholar 

  • Gambis D (2004) Monitoring earth orientation using space-geodetic techniques: state-of-the-art and prospective. J Geod 78(4–5): 295–303. doi:10.1007/s00190-004-0394-1

    Article  Google Scholar 

  • Gendt G, Dick G, Soehne W (1999) GFZ Analysis Center of IGS—annual report 1998. In: Gowey K, Neilan R, Moore A (eds) International GPS Service for Geodynamics 1998 technical reports. IGS Central Bureau, Jet Propulsion Laboratory, Pasadena, CA, pp 79–87

  • Gerstl M (1997) Parameterschätzung in DOGS-OC. DGFI Interner Bericht Nr. MG/01/1996/DGFI, 2nd edn

  • Gerstl M, Kelm R, Müller H, Ehrnsprerger W (2001), DOGS-CS Kombination und Lösung großer Gleichungssysteme. DGFI Interner Bericht Nr. MG/01/1995/DGFI

  • Gross R, Fukumori I, Menemenlis D (2005) Atmospheric and oceanic excitation of decadal-scale Earth orientation variations. J Geophys Res 110: B09405. doi:10.1029/2004JB003565

    Article  Google Scholar 

  • Hawarey M, Hobiger T, Schuh H (2005) Effects of the 2nd order ionospheric terms on VLBI measurements. Geophys Res Lett 32: L11304. doi:10.1029/2005GL022729

    Article  Google Scholar 

  • Herring T, Mathews P, Buffett B (2002) Modeling of nutation-precession: very long baseline interferometry results. J Geohphys Res 107(B4). doi:10.1029/2001JB000165

  • Hugentobler U, Schaer S, Dach R, Meindl M, Urschl C (2005) Routine processing of combined solutions for GPS and GLONASS at CODE. In: Meindl M (ed) Celebrating a decade of the International GNSS Service. Workshop and Symposium 2004. Astronomical Institute, University of Berne, Berne, Switzerland

  • Kelm R (2009) Rigorous variance component estimation in weekly intra-technique and inter-technique combination for global terrestrial reference frame. In: Drewes H (eds) Geodetic Reference Frames. IAG symposia, vol 134. Springer, Berlin, pp 39–44. doi:10.1007/978-3-642-00860-3_6

    Chapter  Google Scholar 

  • König R, Müller H (2007) Station coordinates, Earth rotation parameters, and low degree harmonics from SLR within GGOSD-D. In: Luck J, Moore C, Wilson P (eds) Extending the range. Proceedings 15th International Workshop on Laser Ranging. EOS Space Systems Pty Ltd, pp 106–109

  • Kouba J (2005) Comparison of polar motion with oceanic and atmospheric angular momentum time series for 2-day to Chandler periods. J Geod 79(1–3): 33–42. doi:10.1007/s00190-005-0440-7

    Article  Google Scholar 

  • Kouba J, Vondrak J (2005) Comparison of length of day with oceanic and atmospheric angular momentum series. J Geod 79(4–5): 256–268. doi:10.1007/s00190-005-0467-9

    Article  Google Scholar 

  • Krügel M, Angermann D (2007) Frontiers in the combination of space geodetic techniques. In: Tregoning P, Rizos C (eds) Dynamic Planet. IAG Symposia, vol 130. Springer, Berlin, pp 158–165. doi:10.1007/978-3-540-49350-1_25

    Google Scholar 

  • Krügel M, Thaller D, Tesmer V, Rothacher M, Angermann D, Schmid R (2007) Tropospheric parameters: combination studies based on homogeneous VLBI and GPS data. J Geod 81(6–8): 515–527. doi:10.1007/s00190-006-0127-8

    Article  Google Scholar 

  • Larsen G, Hansen K (2004) Database on wind characteristics. IEA R&D wind annex XVII. Tech Rep Risø-R-1472(N) Roskilde, Denmark

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6): 394–415. doi:10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • Ma C, Sauber JM, Clark TA, Ryan JW, Bell LJ, Gordon D, Himwich WE (1990) Measurement of horizontal motions in Alaska using very long baseline interferometry. J Geophys Res 95(B13): 21991–22011. doi:10.1029/JB095iB13p21991

    Article  Google Scholar 

  • Ma C, Arias E, Eubanks T, Fey A, Gontier A-M, Jacobs C, Sovers O, Archinal B, Charlot P (1998) The International Celestial Reference Frame as realized by Very Long Baseline Interferometry. Astron J 116(1): 516–546. doi:10.1086/300408

    Article  Google Scholar 

  • MacMillan D (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9): 1041–1044. doi:10.1029/95GL00887

    Article  Google Scholar 

  • MacMillan D (2007) Determination of the reference frame scale with VLBI. Geophy Res Abstr 9(04545)

  • Mathews P, Herring T, Buffett B (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth’s interior. J Geohphys Res 107(B4). doi:10.1029/2001JB000390

  • McCarthy D, Petit G (2004) IERS Conventions (2003). IERS Tech Note 32. Verl. Bundesa. Kart., Frankfurt

  • Meisel B, Angermann D, Krügel M (2009) Influence of time variable effects in station positions on the terrestrial reference frame. In: Drewes H (eds) Geodetic Reference Frames. IAG Symposia, vol 134. Springer, Berlin, pp 89–93. doi:10.1007/978-3-642-00860-3_14

    Chapter  Google Scholar 

  • Mendes V, Pavlis E (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31: L14602. doi:10.1029/2004GL020308

    Article  Google Scholar 

  • Nothnagel A, Schnell D (2008) The impact of errors in polar motion and nutation on UT1 determinations from VLBI Intensive observations. J Geod 82(12): 863–869. doi:10.1007/s00190-008-0212-2

    Article  Google Scholar 

  • Nothnagel A, Pilhatsch M, Haas R (1995) Investigations of thermal height changes of geodetic VLBI telescopes. In: Lanotte R, Bianco G (eds) Proceedings of the 10th Working Meeting on European VLBI for Geodesy and Astrometry. Agenzia Spatiale Italiana, Matera, pp 121–133

  • Nothnagel A, Cho J, Roy A, Haas R (2007) WVR calibration applied to European VLBI observing sessions. In: Tregoning P, Rizos C (eds) Dynamic Planet. IAG Symposia, vol 130. Springer, Berlin, pp 152–157

    Google Scholar 

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2): 125–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Plag H-P, Pearlman M (eds) (2009) Global Geodetic Observing System: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin

  • Pottiaux E, Warnant R (2002) First comparisons of precipitable water vapour estimation using GPS and water vapour radiometers at the Royal Observatory of Belgium. GPS Sol 6(1–2): 11–17. doi:10.1007/s10291-002-0007-5

    Article  Google Scholar 

  • Ray J, Griffiths J (2008) Overview of IGS products and analysis center modeling. IGS 2008 analysis center workshop. http://igscb.jpl.nasa.gov/overview/pubs/IGSWorkshop2008/docs/igs08-acs+products.ppt

  • Saastamoinen J (1972) Atmosperic correction for the troposphere and stratosphere in radio ranging of satellites. In: Henriksen SW, Mancini A, Chovitz BH (eds) The use of artificial satellites for geodesy. Geophysical Monograph, vol 15. American Geophysical Union, Washington, pp 247–251

  • Salstein D, Kann D, Miller A, Rosen R (1993) Sub-bureau for Atmospheric Angular Momentum of the International Earth Rotation Service: a meteorological data center with geodetic applications. Bull Am Meteor Soc 74: 67–80

    Article  Google Scholar 

  • Schlüter W, Himwich E, Nothnagel A, Vandenberg N, Whitney A (2002) IVS and its important role in the maintenance of the global reference systems. Adv Space Res 30(2): 127–430. doi:10.1016/S0273-1177(02)00278-8

    Article  Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12): 781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Schön S, Kutterer H (2006) A comparative analysis of uncertainty modelling in GPS data analysis. In: Tregoning P, Rizos R (eds) Dynamic Planet. IAG Symposia, vol 130. Springer, Berlin, pp 137–142. doi:10.1007/978-3-540-49350-1_22

    Google Scholar 

  • Schwegmann W, Richter B (2006) IERS data and information system. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the Earth system from space. Springer, Berlin, pp 321–332. doi:10.1007/3-540-29522-4_21

    Chapter  Google Scholar 

  • Seitz M (2009) Kombination geodätischer Raumbeobachtungsverfahren zur Realisierung eines terrestrischen Referenzsystems. In: DGK Reihe C, vol 630. Deutsche Geodätische Kommission, München

  • Seitz F, Krügel M (2009) Inverse model approach for vertical load deformations in consideration of crustal inhomogeneities. In: Drewes H (eds) Geodetic Reference Frames, IAG Symposia, vol 134. Springer, Berlin, pp 23–29. doi:10.1007/978-3-642-00860-3_4

  • Skurikhina E (2001) On computation of antenna thermal deformation in VLBI data processing. In: Behrend D, Rius A (eds) Proceedings of the 15th Working Meeting on European VLBI for Geodesy and Astrometry. Institut d’Estudis Espacials de Catalunya, Consejo Superior de Investigaciones Cientificas, Barcelona, pp 124– 130

  • Springer T (2000) Modelling and validating orbits and clocks using the Global Positioning System. Geod Geophys Arb in der Schweiz 60, Zürich, Switzerland

  • Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111: B05402. doi:10.1029/2005JB003747

    Article  Google Scholar 

  • Steigenberger P, Boehm J, Tesmer V (2009a) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod 83(10): 943–951. doi:10.1007/s00190-009-0311-8

    Article  Google Scholar 

  • Steigenberger P, Rothacher M, Fritsche M, Rülke A, Dietrich R (2009b) Quality of reprocessed GPS satellite orbits. J Geod 83(3–4): 241–248. doi:10.1007/s00190-008-0228-7

    Article  Google Scholar 

  • Thaller D, Tesmer V, Krügel M, Steigenberger P, Dach R, Rothacher M (2008) Combining VLBI intensive with GPS rapid solutions for deriving a stable UT time series. In: Behrend D, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2008 General Meeting Proceedings, pp 8–13

  • Titov O, Tesmer V, Boehm J (2004) Occam v6.0 software for VLBI data analysis. In: Vandenberg NR, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings. NASA/CP-2004-212255, NASA, Greenbelt, pp 267–271

  • Vennebusch M, Böckmann S, Nothnagel A (2007) The contribution of Very Long Baseline Interferometry to ITRF2005. J Geod 81(6–8): 553–564. doi:10.1007/s00190-006-0117-x

    Article  Google Scholar 

  • Zhu S, Reigber C, Koenig R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data. J Geod 78(1–2): 103–108. doi:10.1007/s00190-004-0379-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nothnagel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothacher, M., Angermann, D., Artz, T. et al. GGOS-D: homogeneous reprocessing and rigorous combination of space geodetic observations. J Geod 85, 679–705 (2011). https://doi.org/10.1007/s00190-011-0475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0475-x

Keywords

Navigation