Skip to main content
Log in

Evaluation of the impact of atmospheric pressure loading modeling on GNSS data analysis

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In recent years, several studies have demonstrated the sensitivity of Global Navigation Satellite System (GNSS) station time series to displacements caused by atmospheric pressure loading (APL). Different methods to take the APL effect into account are used in these studies: applying the corrections from a geophysical model on weekly mean estimates of station coordinates, using observation-level corrections during data analysis, or solving for regression factors between the station displacement and the local pressure. The Center for Orbit Determination in Europe (CODE) is one of the global analysis centers of the International GNSS Service (IGS). The current quality of the IGS products urgently asks to consider this effect in the regular processing scheme. However, the resulting requirements for an APL model are demanding with respect to quality, latency, and—regarding the reprocessing activities—availability over a long time interval (at least from 1994 onward). The APL model of Petrov and Boy (J Geophys Res 109:B03405, 2004) is widely used within the VLBI community and is evaluated in this study with respect to these criteria. The reprocessing effort of CODE provides the basis for validating the APL model. The data set is used to solve for scaling factors for each station to evaluate the geophysical atmospheric non-tidal loading model. A consistent long-term validation of the model over 15 years, from 1994 to 2008, is thus possible. The time series of 15 years allows to study seasonal variations of the scaling factors using the dense GNSS tracking network of the IGS. By interpreting the scaling factors for the stations of the IGS network, the model by (2004) is shown to meet the expectations concerning the order of magnitude of the effect at individual stations within the uncertainty given by the GNSS data processing and within the limitations due to the model itself. The repeatability of station coordinates improves by 20% when applying the effect directly on the data analysis and by 10% when applying a post-processing correction to the resulting weekly coordinates compared with a solution without taking APL into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112(B9): 401–419. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the International GPS Service for Geodynamics (IGS): theory and initial results. Manuscr Geodaetica 19(6): 367–386

    Google Scholar 

  • Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid earth. J Geophys Res 108(B2): 2103. doi:10.1029/2002JB002082

    Article  Google Scholar 

  • Bock D, Noomen R, Scherneck HG (2005) Atmospheric pressure loading displacement of SLR stations. J Geodyn 39: 247–266. doi:10.1016/j.jog.2004.11.004

    Article  Google Scholar 

  • Böhm J, Niell A, Tregoning P, Schuh H (2006a) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33: L07304. doi:10.1029/2005GL025546

    Article  Google Scholar 

  • Böhm J, Werl B, Schuh H (2006b) Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data. J Geophys Res 111: B02406. doi:10.1029/2005JB003629

    Article  Google Scholar 

  • Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10): 679–683. doi:10.1007/s00190-007-0135-3

    Article  Google Scholar 

  • Böhm J, Heinkelmann R, Mendes Cerveira PJ, Schuh H (2009) Atmospheric loading corrections at the observation level in VLBI analysis. J Geod 83(11): 1107–1113. doi:10.1007/s00190-009-0329-y

    Article  Google Scholar 

  • Collilieux X, Altamimi Z, Coulot D, van Dam T, Ray J (2010) Impact of loading effects on determination of the International Terrestrial Reference Frame. Adv Space Res 45(1): 144–154. doi:10.1016/j.asr.2009.08.024

    Article  Google Scholar 

  • Dach R, Beutler G, Bock H, Fridez P, Gäde A, Hugentobler U, Jäggi A, Meindl M, Mervart L, Prange L, Schaer S, Springer T, Urschl C, Walser P (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, Switzerland

    Google Scholar 

  • Dach R, Springer T, Altamimi Z (2008) Experiment on impact of constrained orbit parameters on station coordinates. In: International GNSS Service: Analysis Center Workshop. Miami Beach, Florida, USA

  • Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4): 191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys Space Phys 10: 761–797. doi:10.1029/RG010i003p00761

    Article  Google Scholar 

  • Ferland R, Piraszewski M (2009) The IGS-combined station coordinates, Earth rotation parameters and apparent geocenter. J Geod 83(3–4): 385–392. doi:10.1007/s00190-008-0295-9

    Article  Google Scholar 

  • Kaniuth K, Vetter S (2006) Estimating atmospheric pressure loading regression coefficients from GPS observations. GPS Solut 10(2): 126–134. doi:10.007/s10291-005-0014-4

    Article  Google Scholar 

  • Kouba J (2008) Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1). J Geod 82(4–5): 193–205. doi:10.1007/s00190-007-0170-0

    Article  Google Scholar 

  • MacMillan DS, Gipson JM (1994) Atmospheric pressure loading parameters from very long baseline interferometry observations. J Geophys Res 99(B9): 18,081–18,087. doi:10.1029/94JB01190

    Article  Google Scholar 

  • Manabe S, Sato T, Sakai S, Yokoyama K (1991) Atmospheric loading effect on VLBI observations. In: AGU Chapman conference on geodetic VLBI: monitoring global change. NOAA technical report NOS 137, NGS 49, U.S. Department of Commerce, NOAA/NOS, Rockville, MD, pp 111–122

  • McCarthy D, Petit G (2004) IERS Conventions (2003). IERS technical note 32. Bundesamt für Kartographie und Geodäsie, Frankfurt am Main

  • Ostini L, Dach R, Meindl M, Schaer S, Hugentobler U (2008) FODITS: a new tool of the Bernese GPS software. In: Ihde J, Hornik H (eds) EUREF symposium, no. 18, June 18–20, 2008, Brussels, Belgium. EUREF Publication (in print)

  • Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109: B03405. doi:10.1029/2003JB002500

    Article  Google Scholar 

  • Rabbel W, Zschau J (1985) Static deformations and gravity changes at the Earth’s surface due to atmospheric loading. J Geophys 56: 81–99

    Google Scholar 

  • Schaer S, Dach R, Meindl M (2008) CODE analysis strategy summary. http://www.aiub.unibe.ch/download/CODE/CODE.ACN

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12): 781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Steigenberger P, Böhm J, Tesmer V (2009a) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod 83(10): 943–951. doi:10.1007/s00190-009-0311-8

    Article  Google Scholar 

  • Steigenberger P, Schaer S, Lutz S, Dach R, Ostini L, Hugentobler U, Bock H, Jäggi A, Meindl M, Thaller D (2009b) CODE. EGU General Assembly, Vienna, Austria, pp 19–24

    Google Scholar 

  • Tesmer V, Böhm J, Meisel B, Rothacher M, Steigenberger P (2008) Atmospheric loading coefficients determined from homogeneously reprocessed GPS and VLBI height time series. In: Finkelstein A Behrend D (eds) Measuring the future. Proceedings of the 5th IVS general meeting, pp 307–313

  • Tregoning P, van Dam T (2005) Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophys Res Lett 32: L22310. doi:10.1029/2005GL024104

    Article  Google Scholar 

  • Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114: B09403. doi:10.1029/2009JB006344

    Article  Google Scholar 

  • van Dam T, Herring TA (1994) Detection of atmospheric pressure loading using Very Long Baseline Interferometry measurements. J Geophys Res 99(B3): 4505–4517. doi:10.1029/93JB02658

    Article  Google Scholar 

  • van Dam T, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavalee D, Larson K (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28(4): 651–654. doi:10.1029/2000GL012120

    Article  Google Scholar 

  • van Dam T, Plag HP, Francis O, Gegout P (2003) GGFC special bureau for loading: current status and plans. In: Richter B, Schwegmann W, Dick WR (eds) Proceedings of the IERS workshop on combination research and global geophysical fluids. IERS technical note, no. 30. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, pp 180–198

  • Wessel P, Smith WHF (1998) New, improved version of Generic Mapping Tools released. EOS Trans Am Geophys Union 79(47): 579

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1994) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3): 5005–5017. doi:10.1029/96JB03860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Dach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dach, R., Böhm, J., Lutz, S. et al. Evaluation of the impact of atmospheric pressure loading modeling on GNSS data analysis. J Geod 85, 75–91 (2011). https://doi.org/10.1007/s00190-010-0417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0417-z

Keywords

Navigation