Skip to main content

Advertisement

Log in

Atmospheric pressure loading in GPS positions: dependency on GPS processing methods and effect on assessment of seasonal deformation in the contiguous USA and Alaska

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The Global Positioning System (GPS) has revolutionized the ability to monitor Earth-system processes, including Earth’s water cycle. Several analysis centers process GPS data to estimate ground-antenna positions at daily temporal resolution. Differences in processing strategies can lead to inconsistencies in coordinate-position estimates and therefore influence the analysis of crustal displacement associated with variations in atmospheric and hydrologic mass loading. Here, we compare five GPS data products produced by three processing centers: the Nevada Geodetic Laboratory, Jet Propulsion Laboratory, and UNAVCO Consortium. We find that 5 to 30% of the scatter in residual GPS time series (commonly considered noise) can be explained by atmospheric loading in the contiguous USA and Alaska, but that the percentages vary widely by data product. Positions derived using high-resolution troposphere models (e.g., ECMWF) exhibit significantly lower scatter after correcting for atmospheric loading than positions estimated using constant or slowly varying troposphere models (e.g., GPT2w). The data products also exhibit differences in seasonal deformation (commonly attributed, in large part, to fluctuations in hydrologic mass loading): median vector differences in estimated seasonal amplitude range from 0.4–1.0 mm in the vertical component and 0.1–0.3 mm in the horizontal components, or about 10–40% of the mean amplitudes of seasonal oscillation. Newer products exhibit lower total scatter and stronger correlations than older products. Network-coherent differences in estimates of seasonal deformation reveal reference-frame inconsistencies between data products. We also cross-check two independent models of atmospheric pressure loading: ESMGFZ and LoadDef.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473

    Article  Google Scholar 

  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 121(8):6109–6131

    Article  Google Scholar 

  • Argus DF, Fu Y, Landerer FW (2014) Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion. Geophys Res Lett 41(6):1971–1980

    Article  Google Scholar 

  • Argus DF, Landerer FW, Wiese DN, Martens HR, Fu Y, Famiglietti JS, Thomas BF, Farr TG, Moore AW, Watkins MM (2017) Sustained water loss in California’s mountain rangesduring severe drought from 2012 to 2015 inferred fromGPS. J Geophys Res SolidEarth 122(12):10559–10585

    Article  Google Scholar 

  • Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geod 84(5):327–337

    Article  Google Scholar 

  • Bertiger W, Bar-Sever Y, Dorsey A, Haines B, Harvey N, Hemberger D, Heflin M, Lu W, Miller M, Moore AW et al (2020) GipsyX/RTGx, a new tool set for space geodetic operations and research. Adv Space Res 66(3):469–489

    Article  Google Scholar 

  • Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System. J Geophys Res Atmos 97(D14):15,787–15,801

  • Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2):2103. https://doi.org/10.1029/2002JB002082

    Article  Google Scholar 

  • Blewitt G, Hammond W, Kreemer C (2018) Harnessing the GPS data explosion for interdisciplinary science. Eos 99:1–2

    Article  Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006a) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(L07304):1–4. https://doi.org/10.1029/2005GL025546

    Article  Google Scholar 

  • Boehm J, Werl B, Schuh H (2006b) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res Solid Earth 111(B02406):1–9. https://doi.org/10.1029/2005JB003629

    Article  Google Scholar 

  • Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683

    Article  Google Scholar 

  • Boehm J, Moeller G, Schindelegger M, Pain G, Weber R (2015) Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut 19(3):433–441

    Article  Google Scholar 

  • Borsa AA, Agnew DC, Cayan DR (2014) Ongoing drought-induced uplift in the western United States. Science 345(6204):1587–1590

    Article  Google Scholar 

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Dill R, Dobslaw H (2013) Numerical simulations of global-scale high-resolution hydrological crustal deformations. J Geophys Res Solid Earth 118(9):5008–5017

    Article  Google Scholar 

  • Dong D, Herring T, King RW (1998) Estimating regional deformation from a combination of space and terrestrial geodetic data. J Geod 72(4):200–214

    Article  Google Scholar 

  • Dong D, Fang P, Bock Y, Webb F, Prawirodirdjo L, Kedar S, Jamason P (2006) Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. JGRSE 111(B03405):1–16. https://doi.org/10.1029/2005JB003806

    Article  Google Scholar 

  • Farrell W (1972) Deformation of the Earth by surface loads. Rev Geophys 10(3):761–797

    Article  Google Scholar 

  • Farrell W (1973) Earth tides, ocean tides and tidal loading. Philos Trans R Soc Lond Ser A 274(1239):253–259. https://doi.org/10.1098/rsta.1973.0050

    Article  Google Scholar 

  • Fu LL, Christensen EJ, Yamarone CA, Lefebvre M, Menard Y, Dorrer M, Escudier P (1994) TOPEX/POSEIDON mission overview. J Geophys Res Oceans 99(C12):24,369–24,381

  • Fu Y, Freymueller JT, van Dam T (2012) The effect of using inconsistent ocean tidal loading models on GPS coordinate solutions. J Geod 86(6):409–421

    Article  Google Scholar 

  • Fu Y, Argus DF, Landerer FW (2015) GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon. J Geophys Res Solid Earth 120(1):552–566

    Article  Google Scholar 

  • Guo J, Li Y, Huang Y, Deng H, Xu S, Ning J (2004) Green’s function of the deformation of the Earth as a result of atmospheric loading. Geophys J Int 159(1):53–68. https://doi.org/10.1111/j.1365-246X.2004.02410.x

    Article  Google Scholar 

  • Heflin M, Donnellan A, Parker J, Lyzenga G, Moore A, Ludwig LG, Rundle J, Wang J, Pierce M (2020) Automated estimation and tools to extract positions, velocities, breaks, and seasonal terms from daily GNSS measurements: illuminating nonlinear Salton Trough deformation. Earth Space Sci 7(e2019EA000644):1–10. https://doi.org/10.1029/2019EA000644

  • Herring TA, Melbourne TI, Murray MH, Floyd MA, Szeliga WM, King RW, Phillips DA, Puskas CM, Santillan M, Wang L (2016) Plate Boundary Observatory and related networks: GPS data analysis methods and geodetic products. Rev Geophys 54(4):759–808. https://doi.org/10.1002/2016RG000529

    Article  Google Scholar 

  • Jin S, Cardellach E, Xie F (2014) GNSS remote sensing. Springer, Berlin

    Book  Google Scholar 

  • Kennett B, Engdahl E, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int 122(1):108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x

    Article  Google Scholar 

  • Khan SA, Scherneck HG (2003) The M2 ocean tide loading wave in Alaska: vertical and horizontal displacements, modelled and observed. J Geod 77(3–4):117–127

    Article  Google Scholar 

  • Kouba J (2009) Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses. J Geod 83(3–4):199–208

    Article  Google Scholar 

  • Kreemer C, Blewitt G, Maerten F (2006) Co- and postseismic deformation of the 28 March 2005 Nias Mw 8.7 earthquake from continuous GPS data. Geophys Res Lett 33(L07307):1–4. https://doi.org/10.1029/2005GL025566

  • Lagler K, Schindelegger M, Boehm J, Krásná H, Nilsson T (2013) GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40(6):1069–1073

    Article  Google Scholar 

  • Liu L, Khan SA, van Dam T, Ma JHY, Bevis M (2017) Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading. J Geophys Res Solid Earth 122(1):677–691

    Article  Google Scholar 

  • Longman I (1962) A Green’s function for determining the deformation of the Earth under surface mass loads: 1. Theory. J Geophys Res 67(2):845–850. https://doi.org/10.1029/JZ067i002p00845

    Article  Google Scholar 

  • Longman I (1963) A Green’s function for determining the deformation of the Earth under surface mass loads: 2. Computations and numerical results. J Geophys Res 68(2):485–496. https://doi.org/10.1029/JZ068i002p00485

  • Männel B, Dobslaw H, Dill R, Glaser S, Balidakis K, Thomas M, Schuh H (2019) Correcting surface loading at the observation level: impact on global GNSS and VLBI station networks. J Geod 93(10):2003–2017. https://doi.org/10.1007/s00190-019-01298-y

    Article  Google Scholar 

  • Martens HR, Rivera L, Simons M, Ito T (2016a) The sensitivity of surface mass loading displacement response to perturbations in the elastic structure of the crust and mantle. J Geophys Res Solid Earth 121(5):3911–3938. https://doi.org/10.1002/2015JB012456

    Article  Google Scholar 

  • Martens HR, Simons M, Owen S, Rivera L (2016b) Observations of ocean tidal load response in South America from sub-daily GPS positions. Geophys J Int 205(3):1637–1664. https://doi.org/10.1093/gji/ggw087

    Article  Google Scholar 

  • Martens HR, Rivera L, Simons M (2019) LoadDef: A Python-based toolkit to model elastic deformation caused by surface mass loading on spherically symmetric bodies. Earth Space Sci 6(2):311–323. https://doi.org/10.1029/2018EA000462

    Article  Google Scholar 

  • Mémin A, Boy JP, Santamaría-Gómez A (2020) Correcting GPS measurements for non-tidal loading. GPS Solut 24(2):1–13

    Article  Google Scholar 

  • Milliner C, Materna K, Bürgmann R, Fu Y, Moore AW, Bekaert D, Adhikari S, Argus DF (2018) Tracking the weight of Hurricane Harvey’s stormwater using GPS data. Sci Adv 4(9):1–9. https://doi.org/10.1126/sciadv.aau2477

    Article  Google Scholar 

  • Munekane H, Boehm J (2010) Numerical simulation of troposphere-induced errors in GPS-derived geodetic time series over Japan. J Geod 84(7):405–417

    Article  Google Scholar 

  • Nerem R, Chambers D, Choe C, Mitchum G (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mare Geod 33(S1):435–446

    Article  Google Scholar 

  • Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res Solid Earth 101(B2):3227–3246

    Article  Google Scholar 

  • Penna NT, Clarke PJ, Bos MS, Baker TF (2015) Ocean tide loading displacements in western Europe. Part 1: Validation of kinematic GPS estimates. J Geophys Res Solid Earth 120(9):6523–6539. https://doi.org/10.1002/2015JB011882

  • Petit G, Luzum B (2010) IERS Technical Note No. 36, IERS Conventions (2010). International Earth Rotation and Reference Systems Service: Frankfurt, Germany

  • Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109(B03405):1–14. https://doi.org/10.1029/2003JB002500

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:25–35

    Google Scholar 

  • Springer A, Karegar MA, Kusche J, Keune J, Kurtz W, Kollet S (2019) Evidence of daily hydrological loading in GPS time series over Europe. J Geod 93(10):2145–2153. https://doi.org/10.1007/s00190-019-01295-1

    Article  Google Scholar 

  • Steigenberger P, Boehm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod 83(10):943–951. https://doi.org/10.1007/s00190-009-0311-8

    Article  Google Scholar 

  • Stephens GL, Vane DG, Tanelli S, Im E, Durden S, Rokey M, Reinke D, Partain P, Mace GG, Austin R et al (2008) CloudSat mission: Performance and early science after the first year of operation. J Geophys Res Atmos 113(D00A18):1–18. https://doi.org/10.1029/2008JD009982

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683):503–505

    Article  Google Scholar 

  • Tian Y, Shen ZK (2016) Extracting the regional common-mode component of GPS station position time series from dense continuous network. J Geophys Res Solid Earth 121(2):1080–1096

    Article  Google Scholar 

  • Tregoning P, Herring T (2006) Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33(L23303):1–5. https://doi.org/10.1029/2006GL027706

    Article  Google Scholar 

  • Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114(B09403):1–15. https://doi.org/10.1029/2009JB006344

    Article  Google Scholar 

  • Tregoning P, Watson C (2011) Correction to “Atmospheric effects and spurious signals in GPS analyse”. J Geophys Res 116(B02412):1–2. https://doi.org/10.1029/2010JB008157

    Article  Google Scholar 

  • van Dam TM, Blewitt G, Heflin MB (1994) Atmospheric pressure loading effects on Global Positioning System coordinate determinations. J Geophys Res 99(B12):23,939–23,950

  • van Dam T, Wahr J, Chao Y, Leuliette E (1997) Predictions of crustal deformation and of geoid and sea-level variability caused by oceanic and atmospheric loading. Geophys J Int 129(3):507–517

    Article  Google Scholar 

  • Wdowinski S, Bock Y, Zhang J, Fang P, Genrich J (1997) Southern California permanent GPS geodetic array: spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J Geophys Res Solid Earth 102(B8):18,057–18,070

  • Wijaya DD, Böhm J, Karbon M, Kràsnà H, Schuh H (2013) Atmospheric pressure loading. In: Atmospheric effects in space geodesy. Springer, pp 137–157

  • Williams S, Penna N (2011) Non-tidal ocean loading effects on geodetic GPS heights. Geophys Res Lett 38(L09314):1–5. https://doi.org/10.1029/2011GL046940

    Article  Google Scholar 

  • Wunsch C, Stammer D (1997) Atmospheric loading and the oceanic “inverted barometer” effect. Rev Geophys 35(1):79–107

    Article  Google Scholar 

  • Zumberge J, Heflin M, Jefferson D, Watkins M, Webb F (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Paul Ries for determining satellite orbits and clocks in JPL Repro 3.0, the basis of JPL’s and NGL’s latest solutions analyzed herein. Michael Heflin contributed to determining JPL’s GPS solutions and creating the new GipsyX software. We gratefully acknowledge the insightful feedback from two anonymous reviewers, reviewer Adrian Borsa, and the associate editor, which strengthened the manuscript. Part of this research is performed at Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

Funding

UNAVCO products used here are based on services provided by the GAGE Facility, operated by UNAVCO, Inc., with support from the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA) under NSF Cooperative Agreement EAR-1724794. This research is funded in part by a NASA GNSS Remote Sensing Science Team Grant (NNH14ZDA001N-GNSS) and a NASA Earth Surface and Interior Grant (NNH18ZDA001N-ESI). Research at the University of Montana was additionally funded in part by NASA Earth Surface and Interior Grant 80NSCC19K0361 and NASA Project NNX15AK40A through the Montana Space Grant Consortium. Research at University of Nevada, Reno, was funded by NASA Earth Surface and Interior Grant 80NSSC19K1044. GB, WCH, and CK also received support from NASA Project NNX16AK89G.

Author information

Authors and Affiliations

Authors

Contributions

H.R.M. and D.F.A. conceptualized and designed the study; H.R.M., D.F.A., and C.N. performed the formal analysis and investigation; G.B., W.C.H., and C.K. developed GPS data products and provided processing information from the Nevada Geodetic Laboratory; T.A.H. developed GPS data products and provided processing information from UNAVCO; and A.W.M. developed GPS data products and provided processing information from the Jet Propulsion Laboratory. All authors contributed to the interpretation of data and modeling results. H.R.M. wrote the first draft of the manuscript; all authors commented on this version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hilary R. Martens.

Ethics declarations

Availability of data and material

GPS position series are available from the Nevada Geodetic Laboratory at http://geodesy.unr.edu/gps_timeseries/, from the Jet Propulsion Laboratory (post-point series) at https://sideshow.jpl.nasa.gov/pub/JPL_GPS_Timeseries/, and from UNAVCO at https://www.unavco.org/data/gps-gnss/derived-products/derived-products.html. Elastic displacements produced by changes in non-tidal atmospheric loading (as well as non-tidal oceanic and hydrologic loading) are available from GFZ German Research Centre for Geosciences at https://www.gfz-potsdam.de/en/esmdata/loading and at ftp://esmdata.gfz-potsdam.de/LOADING. The LoadDef software for modeling load-induced deformation is available from Martens et al. (2019).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 57307 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martens, H.R., Argus, D.F., Norberg, C. et al. Atmospheric pressure loading in GPS positions: dependency on GPS processing methods and effect on assessment of seasonal deformation in the contiguous USA and Alaska. J Geod 94, 115 (2020). https://doi.org/10.1007/s00190-020-01445-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-020-01445-w

Keywords

Navigation