Skip to main content
Log in

An overdetermined geodetic boundary value problem approach to telluroid and quasi-geoid computations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In this paper an overdetermined Geodetic Boundary Value Problem (GBVP) approach for telluroid and quasi-geoid computations is presented. The presented GBVP approach can solve the problem of potential value computation on the surface of the Earth, which when applied to a mapping scheme, e.g., here minimum distance mapping, provides a point-wise approach to telluroid computation. Besides, we have succeeded in reducing the number of equations and unknowns of the minimum distance telluroid mapping by one. The sufficient condition of minimum distance telluroid mapping is also recapitulated. Since the introduced GBVP approach has the advantage of implementing various gravity observables simultaneously as input boundary data, it can be regarded as a data fusion technique that exploits all available gravity data. The developed GBVP is used for the computation of the quasi-geoid within a test area in Southwest Finland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam J, Denker H (1991) Test computations for a local quasigeoid in Hungry using FFT. Acta Geodetica Geophysica et Montanistica Hung 26: 33–43

    Google Scholar 

  • Amos MJ, Featherstone WE (2009) Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations. J Geod 83: 57–68

    Article  Google Scholar 

  • Ardalan AA (2000) High-resolution regional geoid computation in the World Geodetic Datum 2000, based upon collocation of linearized observationals of the type GPS, gravity potential and gravity intensity. Ph.D. thesis, Department of geodesy and geoinformatics, Stuttgart University, Stuttgart

  • Ardalan AA, Grafarend EW (2004) High-resolution regional geoid computation without applying Stokes’s formula: a case study of the Iranian geoid. J Geod 78: 138–156

    Google Scholar 

  • Ardalan AA, Grafarend EW, Ihde J (2002) Molodensky potential telluroid based on a minimum-distance map. Case study: the quasi-geoid of East Germany in the World Geodetic Datum 2000. J Geod 76: 127–138

    Article  Google Scholar 

  • Barzaghi R, Brovelli MA, Sona G, Manzino A, Sguerso D (1996) The new Italian quasigeoid: ITALGEO95. Bollettino di Geodesia e Scienze Affini 55: 57–72

    Google Scholar 

  • Baxley J, Moorhouse J (1984) Lagrange multiplier problems in economics. Am Math Mon 91: 404–412

    Article  Google Scholar 

  • Denker H (1998) Evaluation and improvement of the EGG97 quasigeoid model for Europe by GPS and leveling data. Reports of the Finnish Geodetic Institute 98:4, 53–61, Masala

  • Dore P, Simonsen O (1936a) Minutes of the work of the meetings of the section of levelling. Joint meeting of section II and IV, 11 September, A.M., on levelling and gravity. Bulletine Geodesique 52: 9–13

    Article  Google Scholar 

  • Dore P, Simonsen O (1936b) Minutes of the work of the meetings of the section of levelling. Joint meeting with the association of physical oceanography, 12 September, A.M.m Bulletine Geodesique 52: 13–17

    Google Scholar 

  • Duquenne H (1999) Comparison and combination of a gravimetric quasigeoid with a leveled GPS data set by statistical analysis. Physics and Chemistry of the Earth. Part A: Solid Earth Geodesy 24: 79–83

    Article  Google Scholar 

  • Engelis T (1987) Spherical harmonic expansion of the Levitus Sea Surface Topography. Report No. 385, The Ohio State University, Research Foundation

  • Featherstone WE, Kirby JF (1998) Estimates of the separation between the geoid and quasigeoid over Australia. Geomatics Res Australasia 68: 79–90

    Google Scholar 

  • Grafarend EW (1976) Geodetic applications of stochastic processes. Phys Earth Planetary Interiors 12: 151–179

    Article  Google Scholar 

  • Grafarend EW, Ardalan AA (1999) World Geodetic Datum 2000. J Geod 73: 611–623

    Article  Google Scholar 

  • Grafarend EW, Ardalan A, Sideris MG (1999) The Spheroidal fixed-free two boundary-value problem for geoid determination (the Spheroidal Brun’s transform). J Geod 73: 513–533

    Article  Google Scholar 

  • Grafarend EW (2006) Linear and nonlinear models: fixed effects, random effects or mixed models. de Gruyter Verlag, Berlin

    Google Scholar 

  • Hands DW (2004) Introductory mathematical economics, 2nd edn. Oxford University Press, London (1st ed., Heath, 1991)

  • Holota P (1983a) The altimetry gravimetry boundary value problem I: linearization, Friedrich’s inequality. Boll Geod Sci Afini XLII: 13–32

    Google Scholar 

  • Holota P (1983b) The altimetry gravimetry boundary value problem II: weak solution, V-ellipticity. Boll Geod Sci Afini XLII: 69–84

    Google Scholar 

  • Huang J (2002) Computational methods for the discrete downward continuation of the Earth gravity and effects of lateral topographical mass density variation on gravity and the geoid, A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Geodesy and Geomatics Engineering, The University of New Brunswick, May, 2002

  • Koch KR, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76: 259–268

    Article  Google Scholar 

  • Kostelecky J, Kostelecky JRJ, Pesek I, Simek J, Svabensky O, Weigel J, Zeman A (2004) Quasigeoids for the territory of the Czech Republic. Stud Geophys Geod 48: 503–518

    Article  Google Scholar 

  • Lysaker DI, Omang OCD, Pettersen BR, Solheim D (2007) Quasugeoid evaluation with improved leveled height data for Norway. J Geod 81: 617–627

    Article  Google Scholar 

  • Martinec Z, Grafarend EW (1997) Construction of Green’s function to an external Dirichlet boundary-value problem for the Laplace equation on an ellipsoid of revolution. J Geod 71: 562–570

    Article  Google Scholar 

  • Molodensky MS (1945) Main problem of geodetic gravimetry. Trans. centr. res. Inst. G., A. & C., p 42

  • Molodensky MS (1948) External gravitational field and the figure of the Earth’s physical surface. Information of the USSR academy of sciences, geographical and geophysical series 13, No. 3

  • Molodensky MS, Eremeev VF, Yurkina MI (1960) Methods for study of the external gravitational field and figure of the Earth. Translated from Russian by Israel Program for Scientific Translations for the Office of Technical Services, Department of Commerce, Washington, DC, USA (1962)

  • Nahavandchi H, Soltanpour A (2006) Improved determination of heights a conversion surface by combining gravimetric Quasi-Geoid/Geoid and GPS-Levelling height differences. Stud Geophys Geod 50: 165–180

    Article  Google Scholar 

  • Novak P, Kern M, Schwarz KP, Heck B (2001) On the determination of a band-limited gravimetric geoid from airborne gravimetry. Department of Geomatics Engineering, The University of Calgary, Technical Report 30013: 1–222

    Google Scholar 

  • Novak P, Kostelecky J, Klokocnik J (2009) Testing global geopotential models through comparison of a local quasi-geoid model with GPS/leveling data. Stud Geophys Geod 53: 39–60

    Article  Google Scholar 

  • Ono S (1990) Determination of quasigeoid heights. J Geod Soc Jpn 36: 37–50

    Google Scholar 

  • Prutkin I, Klees R (2008) On the non-uniqueness of local quasi-geoids computed from terrestrial gravity anomalies. J Geod 82: 147–156

    Article  Google Scholar 

  • Reigber C, Schmidt R, Flechtner F, Koenig R, Meyer U, Neumayer KH, Schwintzer P, Yuan Zhu S (2006) An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN_GRACE02S. J Geodyn 39: 1–10

    Article  Google Scholar 

  • Safari A, Ardalan AA, Grafarend EW (2005) A new ellipsoidal gravimetric, satellite altimetry and astronomiac boundary value problem, a case study: The geoid of Iran. J Geodyn 39: 545–568

    Article  Google Scholar 

  • Sjoberg LE (1995) On the quasigeoid to geoid separation. Manuscr Geod 20: 182–192

    Google Scholar 

  • Soltanpour A, Nahavandchi H, Featherstone WE (2006) The use of second-generation wavelets to combine a gravimetric Quasigeoid model with GPS-levelling data. J Geod 80: 82–93

    Article  Google Scholar 

  • Sommer M, Breuer R, Bommehardt H, Krohan HJ (1996) An approximation of the surface of quasigeoids in areas of the new German states. Nachrichten aus dem Karten-und Vermessungswesen, Reihe l, 114, pp 5–21

  • Svensson SL (1983) Solution of the altimetry–gravimetry problem. Bull Geod 57: 332–353

    Article  Google Scholar 

  • Svensson SL (1988) Some remarks on the altimetry- gravimetry problem. Manuscr Geod 13: 63–74

    Google Scholar 

  • Tenzer R, Novak P, Moore P, Kuhn M, Vanicek P (2006) Explicit Formula for the Geoid-Quasigeoid separation. Stud Geophys Geod 50: 607–618

    Article  Google Scholar 

  • Torge W, Denker H (1999) One the use of the European Gravimetric (Quasi) geoid EGG97 in Germany. Zeitschrift für Vermessungswesen 124: 154–166

    Google Scholar 

  • Vanicek P, Krakiwsky E (1986) Geodesy the concept. Book Elsevier Science publishers, Amsterdam

    Google Scholar 

  • Xu P, Shen Y, Fukuda Y, Lio Y (2006) Variance Component Estimation in Linear Inverse Ill-posed Models. J Geod 80: 69–81

    Article  Google Scholar 

  • Zhang C (2005) Content and precision-determination of difference between geoid and quasigeoid. Geomat Inf Sci Wuhan Univ 30: 471–473

    Google Scholar 

  • Zhang L, Li F, Chen W, Zhang C (2009) Height datum unification between Shenzhen and Hong Kong using the solution of the linearized fixed-gravimetric boundary value problem. J Geod 83: 411–417

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ardalan.

Additional information

Dedicated to M. S. Molodensky for his innovative contributions to geodesy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardalan, A.A., Karimi, R. & Bilker-Koivula, M. An overdetermined geodetic boundary value problem approach to telluroid and quasi-geoid computations. J Geod 84, 97–104 (2010). https://doi.org/10.1007/s00190-009-0347-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-009-0347-9

Keywords

Navigation