Skip to main content
Log in

Improved determination of heights using a conversion surface by combining gravimetric quasi-geoid/geoid and GPS-levelling height differences

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The quasi-geoid/geoid can be determined from the Global Positioning System (GPS) ellipsoidal height and the normal/orthometric heights derived from levelling (GPS-levelling). In this study a gravimetric quasigeoid and GPS-levelling height differences are combined to develop a new surface, suitable for “levelling” by GPS. This new surface provides better conversion of GPS ellipsoidal heights to the national normal heights. Different combining procedures, a four-parameter solution, linear and cubic splines interpolations, as well as the least-squares collocation method were investigated and compared over entire Norway. More than 1700 GPS-levelling stations were used in this study. The combined surface provides significant accuracy improvement for the normal height transformation of GPS height data, as demonstrated by the post-fitting residuals. The best solution, based on the least-squares collocation, provided a conversion surface for the transformation of GPS heights into normal height in Norway with an accuracy of about 5 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Denker H., Torge W., Wenzel H.-G., Ihde J. and Schirmer U., 2000. Investigation of different methods for the combination of gravity and GPS/levelling data. In: K.-P. Schwarz (Ed.), Geodesy Beyond 2000: The Challenges of the First Decade, Springer, Berlin Heidelberg New York, pp. 137–142.

    Chapter  Google Scholar 

  • Duquenne H., Everaerts M. and Lambot P., 2004. Merging a gravimetric model of the geoid with GPS/levelling data: an example in Belgium. In: C. Jekeli, L. Bastos and J. Fernandes (Eds.), Gravity, Geoid and Space Missions GGSM 2004, Springer, Berlin Heidelberg New York, pp. 131–136.

    Google Scholar 

  • Ekman M., 1989. Impacts of geodynamic phenomena on systems for height and gravity. Bulletin Geodesique, 63, 281–296.

    Article  Google Scholar 

  • Featherstone W.E., 2001. Absolute and relative testing of gravimetric geoid models using Global Positioning System and orthometric height data. Computers and Geosciences, 27(7), 807–814.

    Article  Google Scholar 

  • Featherstone W.E., Dentith M.C. and Kirby J.F., 1998. Strategies for the accurate determination of orthometric heights from GPS. Survey Review, 34, 278–296.

    Article  Google Scholar 

  • Forsberg R, Kaminskis J, Solheim D (1996) Geoid of the Nordic and Baltic region from gravimery and satellite altimetry. Proceedings of International Symposium on Gravity, Geoid and Marine geodesy (GRAGEOMAR), Tokyo, IAG Symposium Vol. 117, pp 540–547. Berlin: Springer-Verlag.

    Google Scholar 

  • Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. W.H. Freeman and Co., San Francisco, USA.

    Google Scholar 

  • Iliffe J.C., Ziebart M., Cross P.A., Forsberg R., Strykowski G. and Tscherning C.C., 2003. OGSM02: a new model for converting GPS-derived heights to local height datums in great Britain and Ireland. Survey Review, 37, 276–293.

    Article  Google Scholar 

  • Jiang Z. and Duquenne H., 1996. On the combined adjuctment of a gravimetrically determined geoid and GPS levelling stations. J. Geodesy, 70, 505–514.

    Article  Google Scholar 

  • Kotsakis J. and Sideris M.G., 1999. On the adjustment of combined GPS/levelling/geoid networks. J. Geodesy, 73, 412–421.

    Article  Google Scholar 

  • Lysaker D., 2003. An Evaluation of the Norwegian Height System NN1954, Different Gravity Corrections and Assumptions of the Adjustment. MSc Thesis, Norwegian University of Life and Science, Oslo, Norway.

    Google Scholar 

  • Moritz H., 1980a. Advanced Physical Geodesy. F. Wichmann Verlag, Karlsruhe, Germany.

    Google Scholar 

  • Mortiz H., 1980b. Geodetic reference system 1980. Bulletin Geodesique, 54, 395–405.

    Article  Google Scholar 

  • Nahavandchi H., 1998. Precise Gravimetric-GPS Geoid Determination with Improved Topographic Corrections Applied over Sweden. PhD Thesis, Royal Institute of Technology, Division of Geodesy, Rep. 1050, Stockholm, Sweden.

    Google Scholar 

  • Nahavandchi H. and Sjöberg L.E., 1998. Unification of vertical datums by GPS and gravimetric geoid models using modified Stokes’s formula. Journal of Marine Geodesy, 21, 261–273.

    Article  Google Scholar 

  • Nahavandchi H. and Sjöberg L.E., 2001. Precise geoid determination over Sweden by the Stokes-Helmert method and improved topographic corrections. J. Geodesy, 75, 74–88.

    Article  Google Scholar 

  • Nahavandchi H., 2004. The quest for a precise geoidal height model. Kart og Plan, 1, 46–56.

    Google Scholar 

  • Nahavandchi H. and Soltanpour A., 2004. An attempt to define a new height datum in Norway. Proceedings of the Geodesy and Hydrography Days 2004, Sandnes, Norway, 1–28 (http://www.geoforum.no/KursOgKonf/tidl_konf/pub_2004/geodesiOgHydrografi2004/).

  • Nahavandchi H., Soltanpour A. and Nyrnes E., 2004. A new gravimetric geoidal height model 37 over Norway computed by the least-squares modification parameters. In: C. Jekeli, L. Bastos and J. Fernandes (Eds.), Gravity, Geoid and Space Missions GGSM 2004, Springer, Berlin Heidelberg New York, pp. 191–196.

    Google Scholar 

  • Sjöberg L.E., 1984. Least squares modification of Stokes’s and Vening Meinez’ formulas by accounting for errors of truncation, potential coefficients and gravity data. Department of Geodesy, University of Uppsala, No. 27, Uppsala, Sweden.

    Google Scholar 

  • Sideris M.G., Mainville A. and Forsberg R., 1992. Geoid testing using GPS and leveling. Australian Journal of Geodesy, Photogrammetry and Surveying, 57, 62–77.

    Google Scholar 

  • Smith D.A. and Small H.J., 1999. The CARIB97 high-resolution geoid height model for the Caribbean Sea. J. Geodesy, 73, 1–9.

    Article  Google Scholar 

  • Smith D.A. and Roman D.R., 2001. GEOID99 and G99SSS: 1-arc-minute geoid models for the United States. J. Geodesy, 75, 469–490.

    Article  Google Scholar 

  • Solheim D., 2000. A new height reference surface for Norway. Symposium of the IAG 7 Subcommission for Europe (EUREF), Tromso, 154–158 (http://www.euref-iag.net/symposia/symposia_2000_Tromso.html).

  • Tapley B.D., Chambers D.P., Bettadpur B. and Ries J.C., 2003. Large scale ocean circulation from the GRACE GGM01 geoid. Geophys. Res. Lett., 30, 2163–2166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahavandchi, H., Soltanpour, A. Improved determination of heights using a conversion surface by combining gravimetric quasi-geoid/geoid and GPS-levelling height differences. Stud Geophys Geod 50, 165–180 (2006). https://doi.org/10.1007/s11200-006-0010-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-006-0010-3

Key words

Navigation