Skip to main content
Log in

Utilisation of Fast Fourier Transform and Least-squares Modification of Stokes formula to compile a gravimetric geoid model over Khartoum State: Sudan

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

We use Fast Fourier Transform (FFT) and least-squares modification (LSM) of Stokes formula to compute the geoid over Khartoum State in Sudan. The two methods (FFT and LSM) have been utilised to test their efficiency with respect to EGM08 and the local GPS-levelling data. The FFT method has many advantages, it is fast and it reduces the computational complexity. The modification of Stokes formula is widely used in geoid modelling; however, its implementation based on point-wise summation requires a considerable amount of time. In FFT, we combine the terrestrial gravity data and the global geopotential model (GGM) by means of a remove-compute-restore procedure and we successfully apply the modification of the Stokes formula in the least-squares sense. FFT and LSM geoid solutions are evaluated against EGM2008 and the GPS-levelling data. The analysis of the undulation differences shows that the LSM solution is more compatible with EGM08 and GPS-levelling data. The discrepancies of the differences are removed using a 4-parameter model, the standard deviation (STD) of the undulation differences of LSM decreased from 0.41 to 0.37 m and from 0.48 to 0.39 m for FFT solution. There is no significant impact to the LSM geoid when adding the additive corrections, while the FFT geoid solution is slightly improved when terrain correction is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbak RA, Erol B, Ustun A (2012) Comparison of the KTH and remove-compute-restore techniques to geoid modelling in a mountainous area. Comput Geosci 48:31–40

    Article  Google Scholar 

  • Abbak RA, Sjöberg LE, Ellmann A, Ustun A (2012) A precise gravimetric geoid model in a mountainous area with scarce gravity data: a case study in central Turkey. Stud Geophys Geod 56(4)

  • Abdalla A (2009) Determination of a gravimetric geoid model of Sudan using the KTH method. Master’s thesis. Royal Institute of Technology (KTH), Stockholm

    Google Scholar 

  • Abdalla A (2013a) The Combined Modelling of the Regional Quasigeoid of New Zealand Using Gravity and GPS-levelling Data. Phd thesis. University of Otago, New Zealand

    Google Scholar 

  • Abdalla A (2013b) Towards a precise gravimetric geoid model in the Saudi Arabia (SAGEO13). Geoid Chapter in: Quasi-geoid model for Saudi Arabia: application for levelling with GPS. Technical report, Project no. 09-spa873-02, supported financially by the National Plan for Science, Technology and Innovation (NPST) program, King Saud University

  • Abdalla A, Fairhead D (2011) A new gravimetric geoid model for Sudan using the KTH method. J Afr Earth Sci 60(4):213–221

    Article  Google Scholar 

  • Abdalla A, Fashir H, Ali A, Fairhead D (2012) Validation of recent GOCE/GRACE geopotential models over Khartoum state—Sudan. J Geodetic Sci 2(2):88–97. 00002

    Article  Google Scholar 

  • Abdalla A, Mogren S (2015) Implementation of a rigorous least-squares modification of Stokes formula to compute a gravimetric geoid model over Saudi Arabia (SAGEO13). Can J Earth Sci 52(10):823–832. doi:10.1139/cjes-2014-0192

    Article  Google Scholar 

  • Abdalla A, Tenzer R (2011) The evaluation of the New Zealand’s geoid model using the KTH method. Geodesy and Cartography 37(1):5–14

    Article  Google Scholar 

  • Abdalla A, Tenzer R (2012a) Compilation of the regional quasigeoid model for New Zealand using the discretised integral-equation approach. J Geodetic Sci 2(3):206–215

    Article  Google Scholar 

  • Abdalla A, Tenzer R (2012b) The global geopotential and regional gravimetric geoid/quasigeoid models testing using the newly adjusted levelling dataset for New Zealand. Appl Geomatics 4(3):187–195

    Article  Google Scholar 

  • Abdalla A, Tenzer R (2014) The Integral-Equation-Based Approaches for Modelling the Local Gravity Field in the Remove-Restore Scheme. In: Rizos C, Willis P (eds) Earth on the Edge: Science for a Sustainable Planet, Number 139 in International Association of Geodesy Symposia. Springer

  • Ågren J, Sjöberg LE, Kiamehr R (2009) The new gravimetric quasigeoid model KTH08 over Sweden. J Appl Geodesy 3(3):143–153

    Article  Google Scholar 

  • Ali A (2012) Evaluation of vertical and horizontal control for Khartoum State. Master thesis. University of Khartoum, Sudan

    Google Scholar 

  • Bracewell R (1978) The Fourier Transform and Its Application, 2nd ed. McGraw-Hi, New York

    Google Scholar 

  • Daras I (2008) Determination of a gravimetric geoid model of Greece using the method of KTH. Master’s thesis, Royal Institute of Technology (KTH)

  • De Min E (1994) On the numerical evaluation of Stokes’ integral. Bull Int Geoid Serv 3:41–46

    Google Scholar 

  • De Witte L (1967) Truncation Errors in the Stokes and Vening Meinesz Formulae for Different Order Spherical Harmonic Gravity Terms. Geophys J Roy Astron Soc 12(5):449–464

    Article  Google Scholar 

  • Denker H (1990) GPS control of the 1989 gravimetric quasigeoid for the Federal Republic of Germany. In: Rapp R. H, Sansó F, Denker H (eds). Springer, Milan, pp 11–13

  • Ellmann A (2005) Computation of three stochastic modifications of Stokes’s formula for regional geoid determination. Comput Geosci 31(6):742–755

    Article  Google Scholar 

  • Fairhead D (1988) African Gravity Project 1986-1988 compiled by University of Leeds. Technical report, UK

    Google Scholar 

  • Featherstone WE (2003) Software for computing five existing types of deterministically modified integration kernel for gravimetric geoid determination. Comput Geosci 29(2):183–193

    Article  Google Scholar 

  • Featherstone WE, Evans JD, Olliver JG (1998) A Meissl-modified Vaníček and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations. J Geod 72(3):154–160

    Article  Google Scholar 

  • Forsberg R, Sideris M (1991) Testing the spherical FFT formula for the geoid over large regions. In: Presented at the AGU Spring ’91 meeting, Volume Baltimore, Maryland, pp 11–13

  • Forsberg R, Tscherning C (1997) Topographic effects in gravity field modelling for BVP. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, vol 65 of lecture notes in earth sciences. Springer, pp 239–272

  • Green C, Fairhead J (1996) New 5’ x 5’ Digital Gravity and Terrain Models of the Earth. In: Rapp R, Cazenave A, Nerem R (eds) Global gravity field and its temporal variations, vol 116 of international association of geodesy Symposia. Springer, pp 227–235

  • Haagmans R, de Min E, Van Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using ID FFT, and a comparison with existing methods for Stokes’ integral. Manuscr Geodaet 18:227–241

    Google Scholar 

  • Heiskanen W, Moritz H (1967) Physical geodesy. Series of books in geology. Freeman, San Francisco

    Google Scholar 

  • Jeffreys H (1953) The use of Stokes’s formula in the adjustment of surveys. Bull Géodésique 30(1):331–338

    Article  Google Scholar 

  • Jekeli C (1981) Modifying Stokes function to reduce the error of geoid undulation computations. J Geophys Res 86(Nb8):6985–6990

    Article  Google Scholar 

  • Kiamehr R (2006) Precise gravimetric geoid model for Iran based on GRACE and SRTM data and the least-squares modification of stokes formula : with some geodynamic interpretations. Phd thesis, Royal Institute of Technology (KTH) , Sweden

    Google Scholar 

  • Kotsakis C, Sideris MG (1999) On the adjustment of combined GPS/levelling/geoid networks. J Geod 73 (8):412– 421

    Article  Google Scholar 

  • Meissl P (1971) Preparations for the numerical evaluation of second order Molodensky-type formulas. Ohio State University, Research Foundation

  • Molodensky M, Eremeev V, Yurkina M (1962) Methods for study of the external gravitational field and figure of the earth. Jerusalem, Israel Program for Scientific Translations, 1962; [available from the Office of Technical Services, U.S. Dept. of Commerce, Washington], -1

  • Moritz H (1980) Advanced physical geodesy. Wichmann Tunbridge, Eng, Abacus Press, Karlsruhe

    Google Scholar 

  • Pail R, Goiginger H, Mayrhofer R, Schuh W, Brockmann JM, Krasbutter I, Hoeck E, Fecher T (2011) GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. In: The ESA living planet symposium, 28 June - 2 July 2010, Bergen, Norway. ESA

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM 2008). J Geophys Res Solid Earth 117(B4):B04406

    Article  Google Scholar 

  • Schwarz K, Sideris M, Forsberg R (1990) The use of FFT techniques in physical geodesy. Geophys J Int 100:485–514

    Article  Google Scholar 

  • Sideris M (1987) Spectral methods for the numerical solution of Molodensk’s problem. Phd thesis. University of Calgary, Canada

    Google Scholar 

  • Sideris M, Li Y (1993) Gravity field convolutions without windowing and edge effects. Bull Géodésique 67:107–118

    Article  Google Scholar 

  • Sideris M, She B (1995) A new, high resolution geoid for Canada and part of the U.S. by the 1D-FFr method. Bull Int Geoid Serv 69(2):92–108

    Article  Google Scholar 

  • Sjöberg LE (1979) Integral formulas for heterogeneous data in physical geodesy. Bull Géodésique 53:297–315

    Article  Google Scholar 

  • Sjöberg LE (1980) Least squares combination of satellite harmonics and integral formulas in physical geodesy. Gerlands Beitr Geophys 89:371–377

    Google Scholar 

  • Sjöberg LE (1984) Least squares modification of Stokes’ and Vening Meinesz’ formulas by accounting for errors of truncation, potential coefficients and gravity data. University of Uppsala

  • Sjöberg LE (1991a) Refined least-squares modification of Stokes formula. Manuscr Geodaet 16:367–375

    Google Scholar 

  • Sjöberg LE (1991b) Some integral formulas for a nonspherical earth. Determination Geoid 106:333–338. 500

    Article  Google Scholar 

  • Sjöberg LE (2003a) A computational scheme to model the geoid by the modified Stokes formula without gravity reductions. J Geod 77(7-8):423–432

    Article  Google Scholar 

  • Sjöberg LE (2003b) A general model for modifying Stokes’ formula and its least-squares solution. J Geod 77 (7-8):459–464

    Article  Google Scholar 

  • Stokes G (1849) On the variation of gravity and the surface of the earth. Trans Cambridge Phil Soc 8:672

    Google Scholar 

  • Tenzer R, Dayoub N, Abdalla A (2013) Analysis of a relative offset between vertical datums at the North and South Islands of New Zealand. Appl Geomatics 5(2):133–145

    Article  Google Scholar 

  • Tenzer R, Novák P, Vajda P, Ellmann A, Abdalla A (2011) Far-zone gravity field contributions corrected for the effect of topography by means of Molodensky’s truncation coefficients. Stud Geophys Geod 55 (1):55–71

    Article  Google Scholar 

  • Tenzer R, Vatrt V, Abdalla A, Dayoub N (2011) Assessment of the LVD offsets for the normal-orthometric heights and different permanent tide systems—a case study of New Zealand. Appl Geomatics 3(1):1–8

    Article  Google Scholar 

  • Tenzer R, Vatrt V, Gan L, Abdalla A, Dayoub N (2011) Combined approach for the unification of levelling networks in New Zealand. J Geodetic Sci 1(4):324–332

    Article  Google Scholar 

  • Tziavos IN (1993) Gravity field modelling using the fast Hartley transform. In: Forsberg (ed) The European Geoid determination, Volume Wiesbaden, pp 26–33

  • Tziavos IN (1996) Comparisons of spectral techniques for geoid computations over large regions. J Geod 70:357–373

    Google Scholar 

  • Ulotu PE (2009) Geoid model of Tanzania from sparse and varying gravity data density by the KTH method. Doctoral dissertation, Royal Institute of Technology (KTH) , Sweden

    Google Scholar 

  • Vaníček P, Featherstone WE (1998) Performance of three types of Stokes kernel in the combined solution for the geoid. J Geod 72(12):684–697

    Article  Google Scholar 

  • Vincent S, Marsh JG (1974) Global detailed gravimetric geoid. In: The use of artificial satellites for geodesy and geodynamics, vol 1, pp 825–855

  • Wenzel H (1982) Geoid computation by least-squares spectral combination using integral kernels, Tokyo, pp 438–453. Internation

  • Wong L, Gore R (1969) Accuracy of geoid heights from modified stokes kernels. Geophys J R Astron Soc 18(1):81–91

    Article  Google Scholar 

  • Yildiz H, Forsberg R, Ågren J, Tscherning C, Sjöberg LE (2012) Comparison of remove-compute-restore and least squares modification of Stokes’ formula techniques to quasi-geoid determination over the Auvergne test area. J Geodetic Sci 2(1): 53–64

    Article  Google Scholar 

Download references

Acknowledgments

The principal author would like to thank Eng. Abobakr Ali of General Directorate of Surveying, Ministry of Planning, Sudan for providing the GPS-levelling data that used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdalla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalla, A., Green, C. Utilisation of Fast Fourier Transform and Least-squares Modification of Stokes formula to compile a gravimetric geoid model over Khartoum State: Sudan. Arab J Geosci 9, 236 (2016). https://doi.org/10.1007/s12517-015-2117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-015-2117-8

Keywords

Navigation