Skip to main content
Log in

Adaptable multi-objective optimization framework: application to metal additive manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This work presents a novel adaptable framework for multi-objective optimization (MOO) in metal additive manufacturing (AM). The framework offers significant advantages by departing from the traditional design of experiments (DoE) and embracing surrogate-based optimization techniques for enhanced efficiency. It accommodates a wide range of process variables such as laser power, scan speed, hatch distance, and optimization objectives like porosity and surface roughness (SR), leveraging Bayesian optimization for continuous improvement. High-fidelity surrogate models are ensured through the implementation of space-filling design and Gaussian process regression. Sensitivity analysis (SA) is employed to quantify the influence of input parameters, while an evolutionary algorithm drives the MOO process. The efficacy of the framework is demonstrated by applying it to optimize SR and porosity in a case study, achieving a significant reduction in SR and porosity levels using data from existing literature. The Gaussian process model achieves a commendable cross-validation R2 score of 0.79, indicating a strong correlation between the predicted and actual values with minimal relative mean errors. Furthermore, the SA highlights the dominant role of hatch spacing in SR prediction and the balanced contribution of laser speed and power on porosity control. This adaptable framework offers significant potential to surpass existing optimization approaches by enabling a more comprehensive optimization, contributing to notable advancements in AM technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8:215–243. https://doi.org/10.1007/s11465-013-0248-8

    Article  Google Scholar 

  2. Huang Y, Leu MC, Mazumder J, Donmez A (2015) Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci Eng 137. https://doi.org/10.1115/1.4028725

  3. Kobryn PA, Semiatin SL (2001) The laser additive manufacture of Ti-6Al-4V. JOM 53:40–42. https://doi.org/10.1007/s11837-001-0068-x

    Article  Google Scholar 

  4. Thomas DS, Gilbert SW (2014) Costs and cost effectiveness of additive manufacturing. Natl Inst Stand Technol. https://doi.org/10.6028/NIST.SP.1176

  5. Sun Z, Tan X, Tor SB, Yeong WY (2016) Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater Des 104:197–204. https://doi.org/10.1016/j.matdes.2016.05.035

    Article  Google Scholar 

  6. Tapia G, Elwany A (2014) A review on process monitoring and control in metal-based additive manufacturing. J Manuf Sci Eng 136. https://doi.org/10.1115/1.4028540

  7. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45. https://doi.org/10.1016/j.actamat.2016.02.014

    Article  Google Scholar 

  8. DebRoy T, Wei H, Zuback JS, Mukherjee T, Elmer J, Milewski J et al (2018) Additive manufacturing of metallic components – process, structure and properties. https://doi.org/10.1016/J.PMATSCI.2017.10.001

  9. Gong H, Nadimpalli VK, Rafi K, Starr T, Stucker B (2019) Micro-CT evaluation of defects in Ti-6Al-4V parts fabricated by metal additive manufacturing. Technologies 7:44. https://doi.org/10.3390/technologies7020044

    Article  Google Scholar 

  10. Mukherjee T, DebRoy T (2018) Mitigation of lack of fusion defects in powder bed fusion additive manufacturing. J Manuf Process null:null. https://doi.org/10.1016/J.JMAPRO.2018.10.028

  11. Ni X, Kong D, Zhang L, Dong C, Song J, Wu W (2019) Effect of process parameters on the mechanical properties of Hastelloy X alloy fabricated by selective laser melting. J Mater Eng Perform 28:5533–5540. https://doi.org/10.1007/s11665-019-04275-w

    Article  Google Scholar 

  12. Gockel J, Sheridan L, Koerper B, Whip B (2019) The influence of additive manufacturing processing parameters on surface roughness and fatigue life. Int J Fatigue 124:380–388. https://doi.org/10.1016/j.ijfatigue.2019.03.025

    Article  Google Scholar 

  13. Francois MM, Sun A, King WE, Henson NJ, Tourret D, Bronkhorst CA et al (2017) Modeling of additive manufacturing processes for metals: challenges and opportunities. Curr Opin Solid State Mater Sci 21:198–206. https://doi.org/10.1016/j.cossms.2016.12.001

    Article  Google Scholar 

  14. Bian L, Thompson SM, Shamsaei N (2015) Mechanical properties and microstructural features of direct laser-deposited Ti-6Al-4V. JOM 67:629–638. https://doi.org/10.1007/s11837-015-1308-9

    Article  Google Scholar 

  15. Masoomi M, Thompson SM, Shamsaei N (2017) Laser powder bed fusion of Ti-6Al-4V parts: thermal modeling and mechanical implications. Int J Mach Tools Manuf 118–119:73–90. https://doi.org/10.1016/j.ijmachtools.2017.04.007

    Article  Google Scholar 

  16. Jayanath S, Achuthan A (2019) A computationally efficient hybrid model for simulating the additive manufacturing process of metals. Int J Mech Sci 160:255–269. https://doi.org/10.1016/j.ijmecsci.2019.06.007

    Article  Google Scholar 

  17. Badia S, Chiumenti M, Martín AF, Neiva E (2017) Parallel finite-element analysis of heat transfer in AM processes by metal deposition. https://research.monash.edu/en/publications/parallel-finite-element-analysis-of-heat-transfer-in-am-processes

  18. Kollmannsberger S, Özcan A, D'Angella D, Carraturo M, Kopp P, Zander N, Reali A, Auricchio F, Rank E (2018) Computational modelling of metal additive manufacturing. https://mediatum.ub.tum.de/1467252

  19. Chen S (2019) Investigation of FEM numerical simulation for the process of metal additive manufacturing in macro scale. Phdthesis, Université de Lyon. https://theses.hal.science/tel-02402859

  20. Chia HY, Wu J, Wang X, Yan W (2022) Process parameter optimization of metal additive manufacturing: a review and outlook. J Mater Inform 2:16. https://doi.org/10.20517/jmi.2022.18

    Article  Google Scholar 

  21. Dejaegher B, Vander HY (2011) Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. J Pharm Biomed Anal 56:141–158. https://doi.org/10.1016/j.jpba.2011.04.023

    Article  Google Scholar 

  22. Bowden GD, Pichler BJ, Maurer A (2019) A Design of Experiments (DoE) Approach accelerates the optimization of copper-mediated 18F-fluorination reactions of arylstannanes. Sci Rep 9:11370. https://doi.org/10.1038/s41598-019-47846-6

    Article  Google Scholar 

  23. Rogalewicz M, Smuskiewicz P, Hamrol A, Kujawinska A, Reis LP (2018) Possibilities and limitations of passive experiments conducted in industrial conditions. In: Hamrol A, Ciszak O, Legutko S, Jurczyk M, (Edits.), Cham: Springer International Publishing, p 869–79. https://doi.org/10.1007/978-3-319-68619-6_84

  24. Tapia G, Khairallah S, Matthews M, King WE, Elwany A (2018) Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. Int J Adv Manuf Technol 94:3591–3603. https://doi.org/10.1007/s00170-017-1045-z

    Article  Google Scholar 

  25. Gramacy RB (2020) Surrogates: gaussian Process modeling, design, and optimization for the applied sciences. Boca Raton: CRC Press, Taylor & Francis Group

  26. Padhye N, Deb K (2011) Multi-objective optimisation and multi-criteria decision making in SLS using evolutionary approaches. Rapid Prototyp J 17:458–478. https://doi.org/10.1108/13552541111184198

    Article  Google Scholar 

  27. Li J, Hu J, Cao L, Wang S, Liu H, Zhou Q (2021) Multi-objective process parameters optimization of SLM using the ensemble of metamodels. J Manuf Process 68:198–209. https://doi.org/10.1016/j.jmapro.2021.05.038

    Article  Google Scholar 

  28. Meng L, Zhao J, Lan X, Yang H, Wang Z (2020) Multi-objective optimisation of bio-inspired lightweight sandwich structures based on selective laser melting. Virtual Phys Prototyp 15:106–119. https://doi.org/10.1080/17452759.2019.1692673

    Article  Google Scholar 

  29. Chaudhry S, Soulaïmani A (2022) A comparative study of machine learning methods for computational modeling of the selective laser melting additive manufacturing process. Appl Sci 12:2324. https://doi.org/10.3390/app12052324

    Article  Google Scholar 

  30. Carvalho DV, Pereira EM, Cardoso JS (2019) Machine learning interpretability: a survey on methods and metrics. Electronics 8:832. https://doi.org/10.3390/electronics8080832

    Article  Google Scholar 

  31. Asadollahi-Yazdi E, Gardan J, Lafon P (2018) Multi-objective optimization of additive manufacturing process. IFAC-PapersOnLine 51:152–157. https://doi.org/10.1016/j.ifacol.2018.08.250

    Article  Google Scholar 

  32. Molnar C (2022) Interpretable machine learning: a guide for making black box models explainable. Second edition. Munich, Germany: Christoph Molnar

  33. Fel T, Cadène R, Chalvidal M, Cord M, Vigouroux D, Serre T (2021) Look at the variance! efficient black-box explanations with sobol-based sensitivity analysis. https://doi.org/10.48550/arXiv.2111.04138

  34. Gu D, Shen Y (2009) Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater Des 30:2903–2910. https://doi.org/10.1016/j.matdes.2009.01.013

    Article  Google Scholar 

  35. Li R, Liu J, Shi Y, Wang L, Jiang W (2012) Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Technol 59:1025–1035. https://doi.org/10.1007/s00170-011-3566-1

    Article  Google Scholar 

  36. Tang M, Pistorius PC, Beuth JL (2017) Prediction of lack-of-fusion porosity for powder bed fusion. Addit Manuf 14:39–48. https://doi.org/10.1016/j.addma.2016.12.001

    Article  Google Scholar 

  37. Bayat M, Thanki A, Mohanty S, Witvrouw A, Yang S, Thorborg J et al (2019) Keyhole-induced porosities in laser-based powder bed fusion (L-PBF) of Ti6Al4V: high-fidelity modelling and experimental validation. Addit Manuf 30:100835. https://doi.org/10.1016/j.addma.2019.100835

    Article  Google Scholar 

  38. Forien J-B, Calta NP, DePond PJ, Guss GM, Roehling TT, Matthews MJ (2020) Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: A correlation between in situ pyrometry and ex situ X-ray radiography. Addit Manuf 35:101336. https://doi.org/10.1016/j.addma.2020.101336

    Article  Google Scholar 

  39. Husslage BGM, Rennen G, van Dam ER, den Hertog D (2011) Space-filling Latin hypercube designs for computer experiments. Optim Eng 12:611–630. https://doi.org/10.1007/s11081-010-9129-8

    Article  Google Scholar 

  40. Pronzato L, Müller WG (2012) Design of computer experiments: space filling and beyond. Stat Comput 22:681–701. https://doi.org/10.1007/s11222-011-9242-3

    Article  MathSciNet  Google Scholar 

  41. Cioppa TM, Lucas TW (2007) Efficient nearly orthogonal and space-filling Latin hypercubes. Technometrics 49:45–55. https://doi.org/10.1198/004017006000000453

    Article  MathSciNet  Google Scholar 

  42. Das S, Tesfamariam S (2022) State-of-the-art review of design of experiments for physics-informed deep learning. https://doi.org/10.48550/arXiv.2202.06416

  43. Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13:455–492. https://doi.org/10.1023/A:1008306431147

    Article  MathSciNet  Google Scholar 

  44. Wang S, Lv L, Du L, Song X (2019) An improved LHS approach for constrained design space based on successive local enumeration algorithm. 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), p 896–9. https://doi.org/10.1109/CYBER46603.2019.9066677

  45. Romano S, Nezhadfar PD, Shamsaei N, Seifi M, Beretta S (2020) High cycle fatigue behavior and life prediction for additively manufactured 17–4 PH stainless steel: effect of sub-surface porosity and surface roughness. Theoret Appl Fract Mech 106:102477. https://doi.org/10.1016/j.tafmec.2020.102477

    Article  Google Scholar 

  46. Kersting K, Plagemann C, Pfaff P, Burgard W (2007) Most likely heteroscedastic Gaussian process regression. Proceedings of the 24th international conference on Machine learning, New York, NY, USA: Association for Computing Machinery, p 393–400. https://doi.org/10.1145/1273496.1273546

  47. Refaeilzadeh P, Tang L, Liu H (2009) Cross-Validation. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer US, Boston, pp 532–8. https://doi.org/10.1007/978-0-387-39940-9_565

    Chapter  Google Scholar 

  48. Saltelli A (ed) (2008) Global sensitivity analysis: the primer. Wiley, Chichester

    Google Scholar 

  49. Castillo E, Mínguez R, Castillo C (2008) Sensitivity analysis in optimization and reliability problems. Reliab Eng Syst Saf 93:1788–1800. https://doi.org/10.1016/j.ress.2008.03.010

    Article  Google Scholar 

  50. Tanino T (1988) Sensitivity analysis in multiobjective optimization. J Optim Theory Appl 56:479–499. https://doi.org/10.1007/BF00939554

    Article  MathSciNet  Google Scholar 

  51. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261–72. https://doi.org/10.1038/s41592-019-0686-2

    Article  Google Scholar 

  52. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D et al (2020) Array programming with NumPy. Nature 585:357–362. https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  53. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  Google Scholar 

  54. Blank J, Deb K (2020) Pymoo: Multi-objective optimization in Python. IEEE Access 8:89497–89509. https://doi.org/10.1109/ACCESS.2020.2990567

    Article  Google Scholar 

  55. Herman J, Usher W (2017) SALib: An open-source Python library for sensitivity analysis. J Open Source Softw 2:97. https://doi.org/10.21105/joss.00097

    Article  Google Scholar 

  56. Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments, 4th edn. Wiley, Hoboken

    Google Scholar 

  57. Montgomery DC (2017) Design and analysis of experiments, 9th edn. John Wiley & Sons, Inc, Hoboken

    Google Scholar 

  58. Garud SS, Karimi IA, Kraft M (2017) Design of computer experiments: a review. Comput Chem Eng 106:71–95. https://doi.org/10.1016/j.compchemeng.2017.05.010

    Article  Google Scholar 

  59. Mostafaei A, Zhao C, He Y, Reza Ghiaasiaan S, Shi B, Shao S et al (2022) Defects and anomalies in powder bed fusion metal additive manufacturing. Curr Opin Solid State Mater Sci 26:100974. https://doi.org/10.1016/j.cossms.2021.100974

    Article  Google Scholar 

  60. Petelet M, Iooss B, Asserin O, Loredo A (2010) Latin hypercube sampling with inequality constraints. AStA Adv Stat Anal 94:325–339. https://doi.org/10.1007/s10182-010-0144-z

    Article  MathSciNet  Google Scholar 

  61. Johnson L, Mahmoudi M, Zhang B, Seede R, Huang X, Maier JT et al (2019) Assessing printability maps in additive manufacturing of metal alloys. Acta Mater 176:199–210. https://doi.org/10.1016/j.actamat.2019.07.005

    Article  Google Scholar 

  62. (2022) Detection, classification and prediction of internal defects from surface morphology data of metal parts fabricated by powder bed fusion type additive manufacturing using an electron beam. Addit Manuf 54:102736. https://doi.org/10.1016/j.addma.2022.102736

  63. Oliveira JP, LaLonde AD, Ma J (2020) Processing parameters in laser powder bed fusion metal additive manufacturing. Mater Des 193:108762. https://doi.org/10.1016/j.matdes.2020.108762

    Article  Google Scholar 

  64. Crestaux T, Le Maıˆtre O, Martinez J-M (2009) Polynomial chaos expansion for sensitivity analysis. Reliab Eng Syst Saf 94:1161–1172. https://doi.org/10.1016/j.ress.2008.10.008

    Article  Google Scholar 

  65. Vohra M, Nath P, Mahadevan S, Tina Lee Y-T (2020) Fast surrogate modeling using dimensionality reduction in model inputs and field output: Application to additive manufacturing. Reliab Eng Syst Saf 201:106986. https://doi.org/10.1016/j.ress.2020.106986

    Article  Google Scholar 

  66. Quirante N, Javaloyes J, Ruiz-Femenia R, Caballero JA (2015) Optimization of chemical processes using surrogate models based on a kriging interpolation. Computer Aided Chemical Engineering, vol. 37, Elsevier, p. 179–84. https://doi.org/10.1016/B978-0-444-63578-5.50025-6

  67. Kudela J, Matousek R (2022) Recent advances and applications of surrogate models for finite element method computations: a review. Soft Comput 26:13709–13733. https://doi.org/10.1007/s00500-022-07362-8

    Article  Google Scholar 

  68. Sheng L, Zhao W, Zhou Y, Lin W, Du C, Lou H (2022) A surrogate model based multi-objective optimization method for optical imaging system. Appl Sci 12:6810. https://doi.org/10.3390/app12136810

    Article  Google Scholar 

  69. Poëtte G (2019) A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation. J Comput Phys 385:135–162. https://doi.org/10.1016/j.jcp.2019.01.052

    Article  MathSciNet  Google Scholar 

  70. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    Google Scholar 

  71. Durrande N (2017) Kernel design. Presented at the gaussian process summer school, The University of Sheffield. http://gpss.cc/gpuqss16/slides/durrande_school.pdf

  72. Wilson A, Adams R (2013) Gaussian process kernels for pattern discovery and extrapolation. Proceedings of the 30th International conference on machine learning, in Proceedings of Mach Learn Res 28(3):1067–1075. https://proceedings.mlr.press/v28/wilson13.html

  73. Wong Y (1991) How Gaussian radial basis functions work. IJCNN-91-Seattle International Joint Conference on Neural Networks, vol. ii, Seattle, WA, USA: IEEE, p 133–8. https://doi.org/10.1109/IJCNN.1991.155326

  74. Marchildon AL, Zingg DW (2023) A non-intrusive solution to the Ill-conditioning problem of the gradient-enhanced Gaussian covariance matrix for Gaussian processes. J Sci Comput 95. https://doi.org/10.1007/s10915-023-02190-w

  75. Basak S, Petit S, Bect J, Vazquez E (2022) Numerical issues in maximum likelihood parameter estimation for Gaussian process interpolation. In: Nicosia G, Ojha V, La Malfa E, La Malfa G, Jansen G, Pardalos PM et al (eds) Machine Learning, Optimization, and Data Science, vol 13164. Springer International Publishing, Cham, pp 116–31. https://doi.org/10.1007/978-3-030-95470-3_9

    Chapter  Google Scholar 

  76. Mirtaheri SL, Shahbazian R (2022) Machine learning theory to applications, 1st edn. CRC Press, Boca Raton. https://doi.org/10.1201/9781003119258

    Book  Google Scholar 

  77. Zhong X, Gallagher B, Liu S, Kailkhura B, Hiszpanski A, Han TY-J (2022) Explainable machine learning in materials science. Npj Comput Mater 8:1–19. https://doi.org/10.1038/s41524-022-00884-7

    Article  Google Scholar 

  78. Kuhnt S, Kalka A (2022) Global sensitivity analysis for the interpretation of machine learning algorithms. In: Steland A, Tsui K-L (eds) Artificial intelligence, big data and data science in statistics: challenges and solutions in environmetrics, the natural sciences and technology. Springer International Publishing, Cham, pp 155–69. https://doi.org/10.1007/978-3-031-07155-3_6

    Chapter  Google Scholar 

  79. Christopher Frey H, Patil SR (2002) Identification and review of sensitivity analysis methods. Risk Anal 22(3):553–78. https://doi.org/10.1111/0272-4332.00039

  80. Morio J (2011) Global and local sensitivity analysis methods for a physical system. Eur J Phys 32:1577–1583. https://doi.org/10.1088/0143-0807/32/6/011

    Article  Google Scholar 

  81. Sobol′ IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280. https://doi.org/10.1016/S0378-4754(00)00270-6

    Article  MathSciNet  Google Scholar 

  82. Zhang X-Y, Trame MN, Lesko LJ, Schmidt S (2015) Sobol sensitivity analysis: a tool to guide the development and evaluation of systems pharmacology models. CPT Pharmacom Syst Pharmacol 4:69–79. https://doi.org/10.1002/psp4.6

    Article  Google Scholar 

  83. Peter JEV, Dwight RP (2010) Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches. Comput Fluids 39:373–391. https://doi.org/10.1016/j.compfluid.2009.09.013

    Article  MathSciNet  Google Scholar 

  84. Saltelli A, Tarantola S, Chan KP-S (1999) A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41:39–56. https://doi.org/10.1080/00401706.1999.10485594

    Article  Google Scholar 

  85. Puy A, Becker W, Piano SL, Saltelli A (2022) A comprehensive comparison of total-order estimators for global sensitivity analysis. Int J Uncertain Quantif 12:1–18. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021038133

    Article  MathSciNet  Google Scholar 

  86. Ashby MF (2000) Multi-objective optimization in material design and selection. Acta Mater 48(1):359–69. https://doi.org/10.1016/S1359-6454(99)00304-3

  87. Caramia M, Dell´Olmo P, editors (2008) Multi-objective Optimization. Multi-objective management in Freight logistics: increasing capacity, service level and safety with optimization algorithms, London: Springer, p 11–36. https://doi.org/10.1007/978-1-84800-382-8_2

  88. Aboutaleb AM, Mahtabi MJ, Tschopp MA, Bian L (2019) Multi-objective accelerated process optimization of mechanical properties in laser-based additive manufacturing: case study on selective laser melting (SLM) Ti-6Al-4V. J Manuf Process 38:432–444. https://doi.org/10.1016/j.jmapro.2018.12.040

    Article  Google Scholar 

  89. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Computat 6:182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  90. Eiben AE, Smith JE (2015) Introduction to evolutionary computing. Springer Berlin Heidelberg, Berlin. https://doi.org/10.1007/978-3-662-44874-8

    Book  Google Scholar 

  91. Powell MJD (2007) A view of algorithms for optimization without derivatives. Technical report DAMTP2007/NA03, Department of applied mathematics and theoretical physics, University of Cambridge, Cambridge

  92. Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4:284–294. https://doi.org/10.1109/4235.873238

    Article  Google Scholar 

  93. Packwood D (2017) Bayesian optimization for materials science, vol 3. Springer Singapore, Singapore. https://doi.org/10.1007/978-981-10-6781-5

    Book  Google Scholar 

  94. Li C, de Celis Rubín, Leal D, Rana S, Gupta S, Sutti A, Greenhill S et al (2017) Rapid Bayesian optimisation for synthesis of short polymer fiber materials. Sci Rep 7:5683. https://doi.org/10.1038/s41598-017-05723-0

    Article  Google Scholar 

  95. Gopakumar AM, Balachandran PV, Xue D, Gubernatis JE, Lookman T (2018) Multi-objective optimization for materials discovery via adaptive design. Sci Rep 8:3738. https://doi.org/10.1038/s41598-018-21936-3

    Article  Google Scholar 

  96. Liu X, Wu Y, Wang B, Ding J, Jie H (2017) An adaptive local range sampling method for reliability-based design optimization using support vector machine and Kriging model. Struct Multidisc Optim 55:2285–2304. https://doi.org/10.1007/s00158-016-1641-9

    Article  Google Scholar 

  97. Liu H, Ong Y-S, Cai J (2018) A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design. Struct Multidisc Optim 57:393–416. https://doi.org/10.1007/s00158-017-1739-8

    Article  Google Scholar 

  98. Greenhill S, Rana S, Gupta S, Vellanki P, Venkatesh S (2020) Bayesian optimization for adaptive experimental design: a review. IEEE Access 8:13937–13948. https://doi.org/10.1109/ACCESS.2020.2966228

    Article  Google Scholar 

  99. Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning algorithms. In Adv Neural Inf Process Syst Vol. 25. Curran associates, Inc. https://papers.nips.cc/paper_files/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html

  100. Deng Y, Mao Z, Yang N, Niu X, Lu X (2020) Collaborative optimization of density and surface roughness of 316L stainless steel in selective laser melting. Materials 13:1601. https://doi.org/10.3390/ma13071601

    Article  Google Scholar 

  101. Bouhlel MA, Hwang JT, Bartoli N, Lafage R, Morlier J, Martins JRRA (2019) A Python surrogate modeling framework with derivatives. Adv Eng Softw 135:102662. https://doi.org/10.1016/j.advengsoft.2019.03.005

    Article  Google Scholar 

  102. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 181:259–70. https://doi.org/10.1016/j.cpc.2009.09.018

    Article  MathSciNet  Google Scholar 

  103. Hort M, Sarro F (2021) The effect of offspring population size on NSGA-II: a preliminary study. Proceedings of the Genetic and Evolutionary Computation Conference Companion, New York, NY, USA: Association for Computing Machinery, p 179–180. https://doi.org/10.1145/3449726.3459479

  104. Li X, Li X, Wang K, Yang S, Li Y (2021) Achievement scalarizing function sorting for strength Pareto evolutionary algorithm in many-objective optimization. Neural Comput Appl 33:6369–6388. https://doi.org/10.1007/s00521-020-05398-1

    Article  Google Scholar 

  105. Villarreal-Marroquin MG, Mosquera-Artamonov JD, Cruz CE, Castro JM (2020) A sequential surrogate-based multiobjective optimization method: effect of initial data set. Wireless Netw 26:5727–5750. https://doi.org/10.1007/s11276-019-02212-2

    Article  Google Scholar 

  106. Gunnell LL, Manwaring K, Lu X, Reynolds J, Vienna J, Hedengren J (2022) Machine learning with gradient-based optimization of nuclear waste vitrification with uncertainties and constraints. Processes 10:2365. https://doi.org/10.3390/pr10112365

    Article  Google Scholar 

  107. Morales JL, Nocedal J (2011) Remark on “algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization.” ACM Trans Math Softw 38:7:1-7:4. https://doi.org/10.1145/2049662.2049669

    Article  Google Scholar 

  108. Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16( 5):1190–1208. https://doi.org/10.1137/0916069

  109. Le QV, Smola AJ, Canu S (2005) Heteroscedastic gaussian process regression. In Proceedings of the 22nd International conference on machine learning. Assoc Comput Mach, ICML ’05. New York, NY, USA, pp 489–96. https://doi.org/10.1145/1102351.1102413

  110. Liu S, Stebner AP, Kappes BB, Zhang X (2021) Machine learning for knowledge transfer across multiple metals additive manufacturing printers. Addit Manuf 39:101877. https://doi.org/10.1016/j.addma.2021.101877

    Article  Google Scholar 

  111. Feurer M, Letham B, Hutter F, Bakshy E (2022) Practical transfer learning for bayesian optimization. https://doi.org/10.48550/arXiv.1802.02219

  112. Theckel Joy T, Rana S, Gupta S, Venkatesh S (2019) A flexible transfer learning framework for Bayesian optimization with convergence guarantee. Expert Syst Appl 115:656–672. https://doi.org/10.1016/j.eswa.2018.08.023

    Article  Google Scholar 

  113. Daulton S, Eriksson D, Balandat M, Bakshy E (2022) Multi-objective Bayesian optimization over high-dimensional search spaces. https://doi.org/10.48550/arXiv.2109.10964

  114. Daulton S, Balandat M, Bakshy E (2020) Differentiable expected hypervolume improvement for parallel multi-objective bayesian optimization. http://arxiv.org/abs/2006.05078

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Imad Eddine Heddar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heddar, M.I.E., Mehdi, B., Matougui, N. et al. Adaptable multi-objective optimization framework: application to metal additive manufacturing. Int J Adv Manuf Technol 132, 1897–1914 (2024). https://doi.org/10.1007/s00170-024-13489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13489-9

Keywords

Navigation