Skip to main content
Log in

Mechanical Properties and Microstructural Features of Direct Laser-Deposited Ti-6Al-4V

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Direct laser deposition (DLD) is a means to additively manufacture metallic, functional parts via blown powder (or wire) and in situ laser delivery. Despite the various research efforts in characterization of post-manufactured DLD parts and in optimizing the DLD process, there are still areas that need to be further explored to promote the widespread adaption and utilization of DLD parts for engineering application. This article aims to review the mechanical properties of Ti-6Al-4V parts manufactured via DLD, including tensile and fatigue characteristics and microstructural features. These mechanical properties will be related with DLD process parameters (e.g., laser power, traverse speed, etc.) and resultant phenomena such as melt pool dynamics and part thermal history. Because fatigue is a main failure mode of parts in many engineering applications, the fatigue behavior of Ti-6Al-4V parts fabricated via DLD is highlighted and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.U.H. Syed, A.J. Pinkerton, and L. Li, Appl. Surf. Sci. 252, 4803 (2006).

    Article  Google Scholar 

  2. F. Wang, J. Mei, and X. Wu, Mater. Des. 28, 2040 (2007).

    Article  Google Scholar 

  3. M.L. Griffith, M.E. Schlienger, L.D. Harwell, M.S. Oliver, M.D. Baldwin, M.T. Ensz, J.E. Smugeresky, M. Essien, J. Brooks, C.V. Robino, W.H. Hofmeister, M.J. Wert, and D.V. Nelson, Paper presented at the Proceedings of the 9th Solid Freeform Fabrication Symposium (Austin, TX, 1998), pp. 89–96.

  4. L. Tang and R.G. Landers, ASME J. Manuf. Sci. Eng. 132, 011010 (2010).

    Article  Google Scholar 

  5. M. Griffith, M. Schlienger, L. Harwell, M. Oliver, M. Baldwin, M. Ensz, M. Essien, J. Brooks, C. Robino, J. Smugeresky, W. Hofmeister, M. Wert, and D. Nelson, Mater. Des. 20, 107 (1999).

    Article  Google Scholar 

  6. T.A. Davis (M.Eng. thesis, University of Louisville, 2004).

  7. G. Pi, A. Zhang, G. Zhu, D. Li, and B. Lu, Int. J. Adv. Manuf. Technol. 57, 841 (2011).

    Article  Google Scholar 

  8. L. Han, K.M. Phatak, and F.W. Liou, Metall. Mater. Trans. B 35, 1139 (2004).

    Article  Google Scholar 

  9. N. Shamsaei, M. Gladskyi, K. Panasovskyi, S. Shukaev, and A. Fatemi, Int. J. Fatigue 32, 1862 (2010).

    Article  Google Scholar 

  10. F.P. Jeantette, D.M. Keicher, J.A. Romero, and L.P. Schanwald, U.S. patent US006046426A (2000).

  11. X. He and J. Mazumder, J. Appl. Phys. 101, 053113 (2007).

    Article  Google Scholar 

  12. B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia, Metall. Mater. Trans. A 39, 2228 (2008).

    Article  Google Scholar 

  13. S. Wen and Y.C. Shin, J. Appl. Phys. 108, 044908 (2010).

    Article  Google Scholar 

  14. J. Mazumder, A. Schifferer, and J. Choi, Mater. Res. Innov. 3, 118 (1998).

    Article  Google Scholar 

  15. L. Wang, S.D. Felicelli, and J.E. Craig, J. Manuf. Sci. Eng. 131, 041019 (2009).

    Article  Google Scholar 

  16. J.E. Craig, T. Wakeman, R. Grylls, and J. Bullen, Paper presented at the TMS 2011 Annual Meeting and Exhibition (San Diego, CA, 2011).

  17. J.J. Hammell, C.J. Ludvigson, M.A. Langerman, and J.W. Sears, Paper presented at the ASME 2011 International Mechanical Engineering Congress and Exposition (Denver, CO, 2011), pp. 41–48.

  18. J. Koch and J. Mazumder, U.S. patent US6122564A (2000).

  19. M.L. Griffith, W.H. Hofmeister, G.A. Knorovsky, D.O. MacCallum, M.E. Schlienger, and J.E. Smugeresky, US patent US6459951B1 (2002).

  20. W. Hofmeister, M. Griffith, M. Ensz, and J. Smugeresky, JOM 53, 30 (2001).

    Article  Google Scholar 

  21. P. Peyre, P. Aubry, R. Fabbro, R. Neveu, and A. Longuet, J. Phys. D Appl. Phys. 41, 025403 (2008).

    Article  Google Scholar 

  22. L. Costa and R. Vilar, Rapid Prototyp. J. 15, 264 (2009).

    Article  Google Scholar 

  23. P.A. Kobryn and S.L. Semiatin, Paper presented at the Proceedings of the 12th Solid Freeform Fabrication (Austin, TX, 2001), p. 179.

  24. R. Grylls, Optomec Intern. Report, Addit. Manuf. Syst. Nano MACRO 2 (2005).

  25. W. Chen, C. Boehlert, J. Howe, and E. Payzant, Metall. Mater. Trans. A 42, 3046 (2011).

    Article  Google Scholar 

  26. H.K. Rafi, T.L. Starr, and B.E. Stucker, Int. J. Adv. Manuf. Technol. 69, 1299 (2013).

    Article  Google Scholar 

  27. Y. Wang, S. Zhang, X. Tian, and H. Wang, Int. J. Miner. Metall. Mater. 20, 665 (2013).

    Article  Google Scholar 

  28. F. Wang, Int. J. Adv. Manuf. Technol. 58, 545 (2011).

    Article  Google Scholar 

  29. C. Lin, C. Ju, and J.C. Lin, Biomaterials 26, 2899 (2005).

    Article  Google Scholar 

  30. G. Dinda, L. Song, and J. Mazumder, Metall. Mater. Trans. A 39, 2914 (2008).

    Article  Google Scholar 

  31. K. Dragolich, N. DiMatteo, and S. Henry, Fatigue Data Book: Light Structural Alloys (Materials Park, OH: ASM International, 1994).

    Google Scholar 

  32. J. Alcisto, A. Enriquez, H. Garcia, S. Hinkson, T. Steelman, E. Silverman, P. Valdovino, H. Gigerenzer, J. Foyos, J. Ogren, J. Dorey, K. Karg, T. McDonald, and O.S. Es-Said, J. Mater. Eng. Perform. 20, 203 (2010).

    Article  Google Scholar 

  33. S. Bontha, N.W. Klingbeil, P.A. Kobryn, and H.L. Fraser, J. Mater. Process. Technol. 178, 135 (2006).

    Article  Google Scholar 

  34. S. Bontha, N.W. Klingbeil, P.A. Kobryn, and H.L. Fraser, Mater. Sci. Eng. A 513–514, 311 (2009).

    Article  Google Scholar 

  35. R. Vilar, J. Laser Appl. 11, 64 (2001).

    Article  Google Scholar 

  36. C. Selcuk, Powder Metall. 54, 94 (2011).

    Google Scholar 

  37. W. Hofmeister, M. Wert, and J. Smugeresky, JOM 51, 1 (1999).

    Article  Google Scholar 

  38. M. Hedges and N. Calder, Paper presented at the Cost Effective Manufacturing via Net-Shape Processing Meeting Proceedings RTO-MP-AVT-139 13 (2006).

  39. B. Baufeld, O. Van Der Biest, R. Gault, and K. Ridgway, IOP Conf. Ser. Mater. Sci. Eng. 26, 012001 (2011).

    Article  Google Scholar 

  40. P. Rangaswamy, M.L. Griffith, M.B. Prime, T.M. Holden, R.B. Rogge, J.M. Edwards, and R.J. Sebring, Mater. Sci. Eng. A 399, 72 (2005).

    Article  Google Scholar 

  41. F. Liu, X. Lin, G. Yang, M. Song, J. Chen, and W. Huang, Opt. Laser Technol. 43, 208 (2011).

    Article  Google Scholar 

  42. J. Beuth and N. Klingbeil, JOM 53, 36 (2001).

    Article  Google Scholar 

  43. Z. Shuangyin, L. Xin, C. Jing, and H. Weidong, Rare Met. Mater. Eng. 38, 774 (2009).

    Google Scholar 

  44. K. Dai and L. Shaw, Rapid Prototype J. 8, 270 (2002).

    Article  Google Scholar 

  45. G.P. Dinda, A.K. Dasgupta, and J. Mazumder, Mater. Sci. Eng. A 509, 98 (2009).

    Article  Google Scholar 

  46. B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia, Metall. Mater. Trans. A 39, 2237 (2008).

    Article  Google Scholar 

  47. Y. Xiong, W.H. Hofmeister, Z. Cheng, J.E. Smugeresky, E.J. Lavernia, and J.M. Schoenung, Acta Mater. 57, 5419 (2009).

    Article  Google Scholar 

  48. D. Keicher and J. Smugeresky, JOM 49, 51 (1997).

    Article  Google Scholar 

  49. Y. Li, H. Yang, X. Lin, W. Huang, J. Li, and Y. Zhou, Mater. Sci. Eng. A 360, 18 (2003).

    Article  Google Scholar 

  50. A.J. Pinkerton and L. Li, J. Phys. D Appl. Phys. 37, 1885 (2004).

    Article  Google Scholar 

  51. P.L. Blackwell, J. Mater. Process Technol. 170, 240 (2005).

    Article  Google Scholar 

  52. A. Dolenc and I. Mäkelä, Comput. Des. 26, 119 (1994).

    Google Scholar 

  53. Y. Yang, J.Y.H. Fuh, H.T. Loh, and Y.S. Wong, J. Manuf. Sci. Eng. 125, 586 (2003).

    Article  Google Scholar 

  54. P. Singh and D. Dutta, J. Comput. Inf. Sci. Eng. 1, 129 (2001).

    Article  Google Scholar 

  55. Y. Yang, J.Y.H. Fuh, H.T. Loh, and Y.S. Wong, IEEE Trans. Autom. Sci. Eng. 2, 276 (2005).

    Article  Google Scholar 

  56. J. Ruan, L. Tang, F.W. Liou, and R.G. Landers, J. Manuf. Sci. Eng. 132, 064502 (2010).

    Article  Google Scholar 

  57. L. Wang, S. Felicelli, Y. Gooroochurn, P.T. Wang, and M.F. Horstemeyer, Mater. Sci. Eng. A 474, 148 (2008).

    Article  Google Scholar 

  58. L. Costa, R. Vilar, T. Reti, and A.M. Deus, Acta Mater. 53, 3987 (2005).

    Article  Google Scholar 

  59. M. Alimardani, E. Toyserkani, and J.P. Huissoon, J. Laser Appl. 19, 14 (2007).

    Article  Google Scholar 

  60. M.L. Griffith, D.M. Keicher, C.L. Atwood, J.A. Romero, J.E. Smugeresky, L.D. Harwell, and D.L. Greene, Paper Presented at the Proceedings of the 7th Solid Freeform Fabrication Symposium (Austin, TX, 1996), pp. 125–132.

  61. F. Vásquez, J.A. Ramos-Grez, and M. Walczak, Int. J. Adv. Manuf. Technol. 59, 1037 (2012).

    Article  Google Scholar 

  62. A. Raghavan, H.L. Wei, T.A. Palmer, and T. DebRoy, J. Laser Appl. 25, 052006 (2013).

    Article  Google Scholar 

  63. M. Donachie, Titanium: A Technical Guide (Materials Park, OH: ASM Int., 2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Shamsaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, L., Thompson, S.M. & Shamsaei, N. Mechanical Properties and Microstructural Features of Direct Laser-Deposited Ti-6Al-4V. JOM 67, 629–638 (2015). https://doi.org/10.1007/s11837-015-1308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1308-9

Keywords

Navigation