Skip to main content

Advertisement

Log in

Effect of Process Parameters on the Mechanical Properties of Hastelloy X Alloy Fabricated by Selective Laser Melting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mechanical properties of Hastelloy X alloys fabricated by selective laser melting were investigated and compared with the wrought counterpart. Nano-inclusions (Mo-rich carbides) distributed at the sub-grain boundaries in the selective laser-melted (SLMed) Hastelloy X alloy, whereas micron-scale precipitations existed in the wrought counterpart. The molten pool boundaries widely existed in the SLMed substrate, which acted as an initial site for crack and led to poor plasticity. However, the ultimate tensile strength values of the SLMed Hastelloy X alloys were around 910 MPa and much higher than the wrought counterpart (~ 750 MPa), which was mainly ascribed to the high-density dislocations enriched at the sub-grain boundaries. Process parameter effects on the mechanical properties were also delineated in this work, and the volumetric energy density for the best mechanical properties of the SLMed Hastelloy X alloy was in the range from 140 to 170 J/mm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Yin, J. Qiu, H. Liu, W. Liu, Y. Wang, Z. Fei, S. Zhao, X. An, J. Cheng, T. Chen, P. Zhang, G. Yu, and L. Xie, Effect of CrF 3 on the Corrosion Behaviour of Hastelloy-N and 316L Stainless Steel Alloys in FLiNaK Molten Salt, Corros. Sci., 2018, 131, p 355–364

    Article  CAS  Google Scholar 

  2. C. Cabet and F. Rouillard, Corrosion of High Temperature Metallic Materials in VHTR, J. Nucl. Mater., 2009, 392(2), p 235–242

    Article  CAS  Google Scholar 

  3. E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno, A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties, Prog. Mater. Sci., 2015, 74, p 401–477

    Article  CAS  Google Scholar 

  4. A.-N. Chen, J.-M. Wu, K. Liu, J.-Y. Chen, H. Xiao, P. Chen, C.-H. Li, and Y.-S. Shi, High-Performance Ceramic Parts with Complex Shape Prepared by Selective Laser Sintering: A Review, Adv. Appl. Ceram., 2017, 117(2), p 100–117

    Article  Google Scholar 

  5. D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng, and X. Li, Bio-functional and Anti-corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater Design, 2018, 152(5), p 88–101

    Article  CAS  Google Scholar 

  6. D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, J. Yao, K. Xiao, and X. Li, Heat Treatment Effect on the Microstructure and Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting for Proton Exchange Membrane Fuel Cells, Electrochim. Acta, 2018, 276, p 293–303

    Article  CAS  Google Scholar 

  7. K.M. Zhang, J.X. Zou, T. Grosdidier, C. Dong, and D.Z. Yang, Improved Pitting Corrosion Resistance of AISI, 316L Stainless Steel Treated by High Current Pulsed Electron Beam, Surf. Coat. Technol., 2006, 201(3-4), p 1393–1400

    Article  CAS  Google Scholar 

  8. T.M. Yue, J.K. Yu, and H.C. Man, The Effect of Excimer Laser Surface Treatment on Pitting Corrosion Resistance of 316LS Stainless Steel, Surf. Coat. Technol., 2001, 137(1), p 65–71

    Article  CAS  Google Scholar 

  9. D. Kong, C. Dong, X. Ni, and X. Li, Corrosion of Metallic Materials Fabricated by Selective Laser Melting, NPJ Mater. Degrad., 2019, 3, p 24

    Article  Google Scholar 

  10. S. Van Bael, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, I.P. Kruth, and J. Schrooten, The Effect of Pore Geometry on the In Vitro Biological Behavior of Human Periosteum-Derived Cells Seeded on Selective Laser-Melted Ti6Al4V Bone Scaffolds, Acta Biomater., 2012, 8(7), p 2824–2834

    Article  Google Scholar 

  11. M.C. Karia, M.A. Popat, and K.B. Sangani, Selective Laser Melting of Inconel Super Alloy—A Review, AIP Conf. Proc., 2017, 1859, p 020013

    Article  Google Scholar 

  12. J.L. Zhang, B. Song, Q.S. Wei, D. Bourell, and Y.S. Shi, A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, Property and Developing Trends, J. Mater. Sci. Technol., 2019, 35(2), p 270–284

    Article  Google Scholar 

  13. G. Miranda, S. Faria, F. Bartolomeu, E. Pinto, S. Madeira, A. Mateus, P. Carreira, N. Alves, F.S. Silva, and O. Carvalho, Predictive Models for Physical and Mechanical Properties of 316L Stainless Steel Produced by Selective Laser Melting, Mater. Sci. Eng. A-Struct., 2016, 657, p 43–56

    Article  CAS  Google Scholar 

  14. M.S.F. de Lima and S. Sankare, Microstructure and Mechanical Behavior of Laser Additive Manufactured AISI, 316 Stainless Steel Stringers, Mater Design, 2014, 55, p 526–532

    Article  Google Scholar 

  15. J.A. Cherry, H.M. Davies, S. Mehmood, N.P. Lavery, S.G.R. Brown, and J. Sienz, Investigation into the Effect of Process Parameters on Microstructural and Physical Properties of 316L Stainless Steel Parts by Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2015, 76(5–8), p 869–879

    Article  Google Scholar 

  16. B.C. Zhang, L. Dembinski, and C. Coddet, The Study of the Laser Parameters and Environment Variables Effect on Mechanical Properties of High Compact Parts Elaborated by Selective Laser Melting 316L Powder, Mater. Sci. Eng. A-Struct., 2013, 584, p 21–31

    Article  CAS  Google Scholar 

  17. F.X. Xie, X.B. He, S.L. Cao, and X.H. Qu, Structural and Mechanical Characteristics of Porous 316L Stainless Steel Fabricated by Indirect Selective Laser Sintering, J. Mater. Process. Technol., 2013, 213(6), p 838–843

    Article  CAS  Google Scholar 

  18. R.D. Li, J.H. Liu, Y.S. Shi, M.Z. Du, and Z. Xie, 316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting, J. Mater. Eng. Perform., 2010, 19(5), p 666–671

    Article  CAS  Google Scholar 

  19. N.J. Harrison, I. Todd, and K. Mumtaz, Reduction of Micro-cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach, Acta Mater., 2015, 94, p 59–68

    Article  CAS  Google Scholar 

  20. D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, X. Cheng, and X. Li, Anisotropy in the Microstructure and Mechanical Property for the Bulk and Porous 316L Stainless Steel Fabricated Via Selective Laser Melting, Mater. Lett., 2019, 235, p 1–5

    Article  CAS  Google Scholar 

  21. X. Ni, D. Kong, W. Wu, L. Zhang, C. Dong, B. He, L. Lu, K. Wu, and D. Zhu, Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting Under Different Scanning Speeds, J. Mater. Eng. Perform., 2018, 27, p 3667

    Article  CAS  Google Scholar 

  22. J.J. Lewandowski and M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res., 2016, 46, p 151–186

    Article  CAS  Google Scholar 

  23. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, and S.B. Tor, Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review, Mater Design, 2018, 139, p 565–586

    Article  CAS  Google Scholar 

  24. D. Kong, C. Dong, X. Ni, L. Zhang, C. Man, J. Yao, Y. Ji, Y. Ying, K. Xiao, X. Cheng, and X. Li, High-Throughput Fabrication of Nickel-Based Alloys with Different Nb Contents Via A Dual-Feed Additive Manufacturing System: Effect of Nb Content on Microstructural and Mechanical Properties, J. Alloys Compd., 2019, 785, p 826–837

    Article  CAS  Google Scholar 

  25. K. Saeidi, X. Gao, Y. Zhong, and Z.J. Shen, Hardened Austenite Steel with Columnar Sub-grain Structure Formed by Laser Melting, Mater. Sci. Eng. A-Struct., 2015, 625, p 221–229

    Article  CAS  Google Scholar 

  26. R.D. Li, P.D. Niu, T.C. Yuan, P. Cao, C. Chen, and K.C. Zhou, Selective Laser Melting of an Equiatomic CoCrFeMnNi High-Entropy Alloy: Processability, Non-equilibrium Microstructure and Mechanical Property, J. Alloys Compd., 2018, 746, p 125–134

    Article  CAS  Google Scholar 

  27. S.C. Luo, P. Gao, H.C. Yu, J.J. Yang, Z.M. Wang, and X.Y. Zeng, Selective Laser Melting of an Equiatomic AlCrCuFeNi High-Entropy Alloy: Processability, Non-equilibrium Microstructure and Mechanical Behavior, J. Alloys Compd., 2019, 771, p 387–397

    Article  CAS  Google Scholar 

  28. C. Man, C. Dong, T. Liu, D. Kong, D. Wang, and X. Li, The Enhancement of Microstructure on the Passive and Pitting Behaviors of Selective Laser Melting 316L SS in Simulated Body Fluid, Appl. Surf. Sci., 2019, 467–468, p 193–205

    Article  Google Scholar 

  29. C. Man, Z.W. Duan, Z.Y. Cui, C.F. Dong, D.C. Kong, T.T. Liu, S.G. Chen, and X. Wang, The Effect of Sub-grain Structure on Intergranular Corrosion of 316L Stainless Steel Fabricated Via Selective Laser Melting, Mater. Lett., 2019, 243, p 157–160

    Article  CAS  Google Scholar 

  30. T. Trosch, J. Strossner, R. Yolkl, and U. Glatzel, Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Compared to Forging and Casting, Mater. Lett., 2016, 164, p 428–431

    Article  CAS  Google Scholar 

  31. A. Rottger, K. Geenen, M. Windmann, F. Binner, and W. Theisen, Comparison of Microstructure and Mechanical Properties of 316 L Austenitic Steel Processed by Selective Laser Melting with Hot-Isostatic Pressed and Cast Material, Mater. Sci. Eng. A-Struct., 2016, 678, p 365–376

    Article  Google Scholar 

  32. J. Suryawanshi, K.G. Prashanth, and U. Ramamurty, Mechanical Behavior of Selective Laser Melted 316L Stainless Steel, Mater. Sci. Eng. A-Struct., 2017, 696, p 113–121

    Article  CAS  Google Scholar 

  33. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549(7672), p 365

    Article  CAS  Google Scholar 

  34. D. Tomus, P.A. Rometsch, M. Heilmaier, and X. Wu, Effect of Minor Alloying Elements on Crack-Formation Characteristics of Hastelloy-X Manufactured by Selective Laser Melting, Addit. Manuf., 2017, 16, p 65–72

    Article  CAS  Google Scholar 

  35. D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, K. Xiao, and X. Li, Mechanical Properties and Corrosion Behavior of Selective Laser Melted 316L Stainless Steel After Different Heat Treatment Processes, J. Mater. Sci. Technol., 2019, 35, p 1499

    Article  Google Scholar 

  36. K.G. Prashanth and J. Eckert, Formation of Metastable Cellular Microstructures in Selective Laser Melted Alloys, J. Alloys Compd., 2017, 707, p 27–34

    Article  CAS  Google Scholar 

  37. X.Y. Wang, K. Kurosawa, M. Huang, X.K. Lu, D. Zhang, H. Kokawa, Y.B. Yan, and S. Yang, Control of Precipitation Behaviour of Hastelloy-X Through Grain Boundary Engineering, Mater. Sci. Technol. Lond., 2017, 33(17), p 2078–2085

    Article  Google Scholar 

  38. M. Suzuki, K. Murakami et al., Inclusion Particle Growth During Solidification of Stainless Steel, Trans. Iron Steel Inst. Jpn., 2007, 41(3), p 247–256

    Article  Google Scholar 

  39. X.-Q. Ni, D.-C. Kong, Y. Wen, L. Zhang, W.-H. Wu, B.-B. He, L. Lu, and D.-X. Zhu, Anisotropy in Mechanical Properties and Corrosion Resistance of 316L Stainless Steel Fabricated by Selective Laser Melting, Int. J. Min. Metall. Mater., 2019, 26(3), p 319–328

    Article  CAS  Google Scholar 

  40. S.F. Wen, S. Li, Q.S. Wei, C.Z. Yan, Z. Sheng, and Y.S. Shi, Effect of Molten Pool Boundaries on the Mechanical Properties of Selective Laser Melting Parts, J. Mater. Process. Technol., 2014, 214(11), p 2660–2667

    Article  Google Scholar 

  41. S.M. Yusuf and N. Gao, Influence of Energy Density on Metallurgy and Properties in Metal Additive Manufacturing, Mater. Sci. Technol. Lond., 2017, 33(11), p 1269–1289

    Article  CAS  Google Scholar 

  42. J. Kluczynski, L. Sniezek, K. Grzelak, and J. Mierzynski, The Influence of Exposure Energy Density on Porosity and Microhardness of the SLM Additive Manufactured Elements, Materials, 2018, 11(11), p E2304

    Article  Google Scholar 

  43. K.G. Prashanth, S. Scudino, T. Maity, J. Das, and J. Eckert, Is the Energy Density a Reliable Parameter for Materials Synthesis by Selective Laser Melting?, Mater. Res. Lett., 2017, 5(6), p 386–390

    Article  CAS  Google Scholar 

  44. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928

    Article  CAS  Google Scholar 

  45. D.W. Rosen, A Review of Synthesis Methods for Additive Manufacturing, Virtual Phys. Prototyp., 2016, 11(4), p 305–317

    Article  Google Scholar 

  46. H. Zhang, D. Gu, L. Xi, H. Zhang, M. Xia, and C. Ma, Anisotropic Corrosion Resistance of TiC Reinforced Ni-Based Composites Fabricated by Selective Laser melting, J. Mater. Sci. Technol., 2019, 35(6), p 1128–1136

    Article  Google Scholar 

  47. D.C. Kong, A.N. Xu, C.F. Dong, F.X. Mao, K. Xiao, X.G. Li, and D.D. Macdonald, Electrochemical Investigation and Ab Initio Computation of Passive Film Properties on Copper in Anaerobic Sulphide Solutions, Corros. Sci., 2017, 116, p 34–43

    Article  CAS  Google Scholar 

  48. D.C. Kong, C.F. Dong, X.Q. Ni, A.N. Xu, C. He, K. Xiao, and X.G. Li, Long-Term Polarisation and Immersion for Copper Corrosion in High-Level Nuclear Waste Environment, Mater. Corros., 2017, 68(10), p 1070–1079

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai Materials Genome Institute No. 5 (Project Number 16DZ2260605), Shanghai Sailing Program (Project Number 17YF1405400), Shanghai Research Institute of Materials Technology Innovation Project (18SG-07) and the project to strengthen industrial development at the grass-roots level (Project Number TC160A310/19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Decheng Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, X., Kong, D., Zhang, L. et al. Effect of Process Parameters on the Mechanical Properties of Hastelloy X Alloy Fabricated by Selective Laser Melting. J. of Materi Eng and Perform 28, 5533–5540 (2019). https://doi.org/10.1007/s11665-019-04275-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04275-w

Keywords

Navigation