Skip to main content
Log in

Research progress on the chatter stability in machining systems

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The research status and progress of the chatter stability in machining systems were systematically reviewed. Three types of chatter mechanisms and their interrelationships in machining processes were introduced. To establish a comprehensive and accurate chatter stability model, the factors that primarily influence chatter stability were discussed from two perspectives: system structure and machining processes. The methods for identifying dynamic parameters of the machining system, including modal parameters and contact stiffness, were summarized. The principle, advantages, shortcomings, and applications of chatter stability region solution methods, including the stability lobe diagram (SLD) methods, the frequency-domain methods, and the time-domain methods, were comprehensively analyzed. As the standard representation methods of stability analysis, SLD can be obtained based on control theory and machine learning techniques, respectively. The frequency-domain methods can be categorized into single-frequency methods and multi-frequency methods, while the time-domain methods encompass simulation time-domain methods and various discretization methods. In addition, the uncertainty analysis of the chatter stability was conducted for the first time, taking into account the uncertain parameters. The uncertainty analysis methods were outlined based on probability theory, interval number theory, and fuzzy set theory. On the above bases, the research challenges of the chatter stability in machining systems were summarized. Finally, its development trend has been prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data availability

The data sets supporting the results of this article are included within the article and its additional files.

References

  1. Ghorbani S, Rogov VA, Carluccio A, Belov PS (2019) The effect of composite boring bars on vibration in machining process. Int J Adv Manuf Technol 105(1–4):1157–1174. https://doi.org/10.1007/s00170-019-04298-6

    Article  Google Scholar 

  2. Shvartsburg LE, Ivanova NA, Ryabov SA, Kulizade DI, Aksenov VA, Sorokina EA, Isaev AV (2021) Vibration in machining. Russ Eng Res 41(2):180–182. https://doi.org/10.3103/S1068798X21020179

    Article  Google Scholar 

  3. Yuan L, Pan ZX, Ding DH, Sun SS, Li WH (2018) A review on chatter in robotic machining process regarding both regenerative and mode coupling mechanism. IEEE/ASME Trans Mechatron 23(5):2240–2251. https://doi.org/10.1109/tmech.2018.2864652

    Article  Google Scholar 

  4. Quintana G, Ciurana D, Teixidor D, Ferrer I (2011) Experimental introduction to forced and self-excited vibrations in milling processes and identification of stability lobes diagrams. Mater Sci Forum 1369(692):24–32. https://doi.org/10.4028/www.scientific.net/MSF.692.24

    Article  Google Scholar 

  5. Urbikain G, Olvera D, López de Lacalle LN, Beranoagirre A, Elías-Zuñiga A (2019) Prediction methods and experimental techniques for chatter avoidance in turning systems: a review. Appl Sci 9(21):1–18. https://doi.org/10.3390/app9214718

    Article  Google Scholar 

  6. Qin L, Liu EL, Xing HW, Zhao LG (2019) Research progress on stability analysis of turning process. J Harbin Univ Sci Technol 9(21):1–18. https://doi.org/10.15938/j.jhust.2019.01.003

    Article  Google Scholar 

  7. Zhu LD, Liu CF (2020) Recent progress of chatter prediction, detection and suppression in milling. Mech Syst Sig Process 143(C):106840. https://doi.org/10.1016/j.ymssp.2020.106840

    Article  Google Scholar 

  8. Lamraoui M, Barakat M, Thomas M, Badaoui ME (2015) Chatter detection in milling machines by neural network classification and feature selection. J Vib Control 21(7):1251–1266. https://doi.org/10.1016/j.ymssp.2020.106840

    Article  Google Scholar 

  9. Inasaki I, Karpuschewski B, Lee HS (2001) Grinding chatter-origin and suppression. CIRP Ann Manuf Technol 50(2):515–534. https://doi.org/10.1016/S0007-8506(07)62992-8

    Article  Google Scholar 

  10. Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. CIRP Ann Manuf Technol 53(2):619–642. https://doi.org/10.1016/S0007-8506(07)60032-8

    Article  Google Scholar 

  11. Pan JQ, Chen C, Liu ZB, Wang XB (2021) Multi-feature extraction and analysis for boring chatter monitoring. Int J Adv Manuf Technol 117(9–10):3129–3136. https://doi.org/10.1007/S00170-021-07191-3

    Article  Google Scholar 

  12. Wang GF, Dong HY, Guo YJ, Ke YL (2017) Chatter mechanism and stability analysis of robotic boring. Int J Adv Manuf Technol 91(1–4):411–421. https://doi.org/10.1007/s00170-016-9731-9

    Article  Google Scholar 

  13. Ozturk OM, Kilic ZM, Altintas Y (2018) Mechanics and dynamics of orbital drilling operations. Int J Mach Tools Manuf 129:37–47. https://doi.org/10.1016/j.ijmachtools.2018.03.001

    Article  Google Scholar 

  14. Ma YC, Wan M, Yang Y, Zhang WH (2019) Dynamics of tapping process. Int J Mach Tools Manuf 140:34–47. https://doi.org/10.1016/j.ijmachtools.2019.02.002

    Article  Google Scholar 

  15. Thaler T, Potočnik P, Bric I, Govekar E (2014) Chatter detection in band sawing based on discriminant analysis of sound features. Appl Acoust 77:114–121. https://doi.org/10.1016/j.apacoust.2012.12.004

    Article  Google Scholar 

  16. Thaler T, Krese B, Govekar E (2015) Stability diagrams and chatter avoidance in horizontal band sawing. CIRP Ann Manuf Technol 64(1):81–84. https://doi.org/10.1016/j.cirp.2015.04.081

    Article  Google Scholar 

  17. Liao WH, Zheng K, Sun LJ, Dong S, Zhang L (2021) Review on chatter stability in robotic machining for large complex components. Acta Aeronautica et Astronautica Sinica 43(1):026061. https://doi.org/10.7527/s1000-6893.2021.26061

    Article  Google Scholar 

  18. Zheng ZP, Jin X, Sun YW, Zhang ZJ, Sun HC, Li QM (2020) Prediction of chatter stability for enhanced productivity in parallel orthogonal turn-milling. Int J Adv Manuf Technol 110(9):2377–2388. https://doi.org/10.1007/s00170-020-06015-0

    Article  Google Scholar 

  19. Comak A, Altintas Y (2018) Dynamics and stability of turn-milling operations with varying time delay in discrete time domain. J Manuf Sci Eng 140(10):101013. https://doi.org/10.1115/1.4040726

    Article  Google Scholar 

  20. Peng ZL, Zhang DY, Zhang XY (2020) Chatter stability and precision during high-speed ultrasonic vibration cutting of a thin-walled titanium cylinder. Chin J Aeronaut 02(11):1–15. https://doi.org/10.1016/j.cja.2020.02.011

    Article  ADS  Google Scholar 

  21. Wang WK, Wan M, Zhang WH, Yang Y (2022) Chatter detection methods in the machining processes: a review. J Manuf Process 77:240–259. https://doi.org/10.1016/J.JMAPRO.2022.03.018

    Article  Google Scholar 

  22. Myrsini N, Spyridon P, Anastasios K, Ilias G, Stefanos V, Ioannis K (2022) Infrastructure monitoring and quality diagnosis in CNC machining: a review. CIRP J Manuf Sci Technol 38:631–649. https://doi.org/10.1016/J.JMAPRO.2022.03.018

    Article  Google Scholar 

  23. Wang YH, Wang M (2010) Advances on machining chatter suppression research. J Mech Eng 46(07):166–174. https://doi.org/10.3901/JME.2010.07.166

    Article  Google Scholar 

  24. Fei JX, Xu FF, Lin B, Huang T (2020) State of the art in milling process of the flexible workpiece. Int J Adv Manuf Technol 109(5–6):1695–1725. https://doi.org/10.1007/s00170-020-05616-z

    Article  Google Scholar 

  25. Honeycutt A, Schmitz TL (2018) Milling bifurcations: a review of literature and experiment. J Manuf Sci Eng 140(12):120801. https://doi.org/10.1115/1.4041325

    Article  Google Scholar 

  26. Lu XH, Yang K, Luan YH, Hou PR, Gu H (2021) A review on chatter stability in thin-wall milling. J Vib Shock 40(08):50–61. https://doi.org/10.13465/j.cnki.jvs.2021.08.007

    Article  Google Scholar 

  27. Lu XH, Wang FC, Wang H, Wang XX, Si LK (2016) A review about chatter stability analysis in milling process. J Vib Shock 35(01):74–82. https://doi.org/10.13465/j.cnki.jvs.2016.01.014

    Article  CAS  Google Scholar 

  28. Wu G, Li GX, Pan WC, Raja I, Wang X, Ding SL (2021) A state-of-art review on chatter and geometric errors in thin-wall machining processes. J Manuf Process 68(PA):454–480. https://doi.org/10.1016/J.JMAPRO.2021.05.055

    Article  Google Scholar 

  29. Lu SX, Guo S, Zhang JQ, Jiang QH, Zhou C, Zhang B (2022) Research progress on grindability of high performance difficult-to-machine materials. Surf Technol 51(03):12–42. https://doi.org/10.16490/j.cnki.issn.1001-3660.2022.03.002

    Article  Google Scholar 

  30. Oliveira JFG, França TV, Wang JP (2008) Experimental analysis of wheel/workpiece dynamic interactions in grinding. CIRP Ann Manuf Technol 57(1):329–332. https://doi.org/10.1016/j.cirp.2008.03.096

    Article  Google Scholar 

  31. Urbicain G, Palacios JA, Fernández A, Rodríguez A, Lacalle LNLde, Elías-Zúñiga A, (2013) Stability prediction maps in turning of difficult-to-cut materials. Pro Eng 63:514–522. https://doi.org/10.1016/j.proeng.2013.08.244

    Article  CAS  Google Scholar 

  32. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376. https://doi.org/10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  33. Wang ZX, Liu XL, Li MY, Liang SY, Wang LC, Li YQ, Meng BY (2020) Intelligent monitoring and control technology of cutting chatter. J Mech Eng 56(24):1–23. https://doi.org/10.3901/JME.2020.24.001

    Article  Google Scholar 

  34. Nam S, Hayasaka T, Jung H, Shamoto E (2020) Proposal of novel chatter stability indices of spindle speed variation based on its chatter growth characteristics. Precis Eng 62(C):121–133. https://doi.org/10.1016/j.precisioneng.2019.11.018

    Article  Google Scholar 

  35. Sun C, Duan JC, Lan DX, Liu ZX, Xiu SC (2018) Prediction about ground hardening layers distribution on grinding chatter by contact stiffness. Arch Civil Mech Eng 18(4):1626–1642. https://doi.org/10.1016/j.acme.2018.06.010

    Article  Google Scholar 

  36. Sun C, Deng YS, Lan DX, Xiu SC (2018) Modeling and predicting ground surface topography on grinding chatter. Procedia CIRP 71:364–369. https://doi.org/10.1016/j.procir.2018.05.042

    Article  Google Scholar 

  37. Sun C, Liu ZX, Lan DX, Duan JC, Xiu SC (2018) Study on the influence of the grinding chatter on the workpiece’s microstructure transformation. Int J Adv Manuf Technol 96(9–12):3861–3879. https://doi.org/10.1007/s00170-018-1794-3

    Article  Google Scholar 

  38. Zhang Z, Li HG, Liu XB, Zhang WY, Meng G (2018) Chatter mitigation for the milling of thin-walled workpiece. Int J Mech Sci 138–139:262–271. https://doi.org/10.1016/j.ijmecsci.2018.02.014

    Article  Google Scholar 

  39. Tóth M, Sims ND, Curtis D (2019) An analytical study of wheel regeneration in surface grinding. Procedia CIRP 82:214–219. https://doi.org/10.1016/j.procir.2019.04.046

    Article  Google Scholar 

  40. Thompson RA (1986) On the Doubly Regenerative stability of a grinder: the theory of chatter growth. J Eng Ind 108(2):75–82. https://doi.org/10.1115/1.3187054

    Article  Google Scholar 

  41. Thompson RA (1992) On the doubly regenerative stability of a grinder: the effect of contact stiffness and wave filtering. J Eng Ind 114(1):53–60. https://doi.org/10.1115/1.2899758

    Article  Google Scholar 

  42. Liu ZH, Payre G (2006) Stability analysis of doubly regenerative cylindrical grinding process. J Sound Vib 301(3):950–962. https://doi.org/10.1016/j.jsv.2006.10.041

    Article  ADS  Google Scholar 

  43. Hahn RS (1954) On the theory of regenerative chatter in precision-grinding operations. Trans ASME 76(5):593–597. https://doi.org/10.1115/1.4014908

    Article  Google Scholar 

  44. Arnold RN (1946) Cutting tools research: report of subcommittee on carbide tools: the mechanism of tool vibration in the cutting of steel. Proc Ins Mech Eng 154(1):261–284. https://doi.org/10.1243/PIME.PROC.1946.154.037.02

    Article  Google Scholar 

  45. Grabec I (1986) Chaos generated by the cutting process. Phys Lett A 117(8):384–386. https://doi.org/10.1016/0375-9601(86)90003-4

    Article  MathSciNet  ADS  Google Scholar 

  46. Wiercigroch M, Krivtsov AM (2001) Frictional chatter in orthogonal metal cutting. Philos Trans Royal Soc A: Math Phys Eng Sci 359(1781):713–738. https://doi.org/10.1098/rsta.2000.0752

    Article  ADS  Google Scholar 

  47. Wiercigroch M, Wahi P (2014) Modelling of frictional chatter in metal cutting. Int J Mech Sci 89:167–176. https://doi.org/10.1016/j.ijmecsci.2014.08.020

    Article  Google Scholar 

  48. Huang Y, Wang TY, Zhang Y, Jiang YX (2008) Nonlinear analysis of frictional chatter mechanism in mechanical systems. Chin Mech Eng 19(14):1677-1680. JournalArticle/5aed14a3c095d710d4081adb

  49. Wang A, Jin WY, Chen WK, Feng RC, Xu CW (2018) Bifurcation and chaotic vibration of frictional chatter in turning process. Adv Mech Eng 10(4):1–8. https://doi.org/10.1177/1687814018771262

    Article  Google Scholar 

  50. Weremczuk A, Rusinek R (2017) Influence of frictional mechanism on chatter vibrations in the cutting process-analytical approach. Int J Adv Manuf Technol 89(9–12):2837–2844. https://doi.org/10.1007/s00170-016-9520-5

    Article  Google Scholar 

  51. Yan Y, Xu J, Wiercigrocch M (2016) Regenerative and frictional chatter in plunge grinding. Nonlinear Dyn 86(1):283–307. https://doi.org/10.1007/s11071-016-2889-8

    Article  Google Scholar 

  52. He FX, Liu Y, Liu K (2019) A chatter-free path optimization algorithm based on stiffness orientation method for robotic milling. Int J Adv Manuf Technol 101(9):2739–2750. https://doi.org/10.1007/s00170-018-3099-y

    Article  Google Scholar 

  53. Tlusty J, Ismail F (1981) Basic non-linearity in machining chatter. CIRP Ann Manuf Technol 30(1):299–304. https://doi.org/10.1016/S0007-8506(07)60946-9

    Article  Google Scholar 

  54. Gasparetto A (2001) Eigenvalue analysis of mode-coupling chatter for machine-tool stabilization. J Vib Control 7(2):181–197. https://doi.org/10.1177/107754630100700203

    Article  Google Scholar 

  55. Gallina P, Trevisani A (2003) On the stabilizing and destabilizing effects of damping in wood cutting machines[J]. Int J Mach Tools Manuf 43(9):955–964. https://doi.org/10.1016/S0890-6955(03)00061-0

    Article  Google Scholar 

  56. Badiola X, Iturrospe A, Abete JM, Arrazola PJ (2019) State-space analysis of mode-coupling workpiece chatter. Int J Adv Manuf Technol 103(5–8):2773–2781. https://doi.org/10.1007/s00170-019-03737-8

    Article  Google Scholar 

  57. Pan ZX, Zhang H, Zhu ZQ, Wang JJ (2005) Chatter analysis of robotic machining process. J Mater Process Tech 173(3):301–309. https://doi.org/10.1016/j.jmatprotec.2005.11.033

    Article  ADS  CAS  Google Scholar 

  58. Iturrospe A, Atxa V, Abete JM (2006) State-space analysis of mode-coupling in orthogonal metal cutting under wave regeneration. Int J Mach Tools Manuf 47(10):1583–1592. https://doi.org/10.1016/j.ijmachtools.2006.11.005

    Article  Google Scholar 

  59. Zhang XJ, Xiong CH, Ding Y, Feng MJ, Xiong YL (2011) Milling stability analysis with simultaneously considering the structural mode coupling effect and regenerative effect. Int J Mach Tools Manuf 53(1):127–140. https://doi.org/10.1016/j.ijmachtools.2011.10.004

    Article  Google Scholar 

  60. Ji YJ, Wang XB, Liu ZB, Wang HJ, Jiao L, Zhang L, Huang T (2018) Milling stability prediction with simultaneously considering the multiple factors coupling effects-regenerative effect, mode coupling, and process damping. Int J Adv Manuf Technol 97(5–8):2509–2527. https://doi.org/10.1007/s00170-018-2017-7

    Article  Google Scholar 

  61. Dai YB, Li HK, Wei ZC (2019) Modeling method for chatter stability lobes of ball-end mill based on precise integration. J Vib Meas Diagn 39(03):525–530. https://doi.org/10.16450/j.cnki.issn.1004-6801.2019.03.010

    Article  Google Scholar 

  62. Tlusty J, Polacek M (2007) The stability of the machine tool against self-excited vibration in machining. In: Proceedings of the ASME Production Engineering Research Conference. ASME, pp 465–474. https://doi.org/10.17973/MMSJ.2013_12_201314

  63. Drobilek J, Polacek M, Bach P, Janota M (2019) Improved dynamic cutting force model with complex coefficients at orthogonal turning. Int J Adv Manuf Technol 103(5–8):2691–2705. https://doi.org/10.1007/s00170-019-03715-0

    Article  Google Scholar 

  64. Xia Y, Wan Y, Luo XC, Liu ZQ, Song QH (2021) Milling stability prediction based on the hybrid interpolation scheme of the Newton and Lagrange polynomials. Int J Adv Manuf Technol 112(5–6):1501–1512. https://doi.org/10.1007/S00170-020-06420-5

    Article  Google Scholar 

  65. Gao SH, Meng G, Long XH (2011) Study of milling stability with Hertz contact stiffness of ball bearings. Arch Appl Mech 81(8):1141–1151. https://doi.org/10.1007/s00419-010-0475-y

    Article  Google Scholar 

  66. Tang YY, Zhang J, Tian H, Liu HG, Zhao WH (2023) Optimization method of spindle speed with the consideration of chatter and forced vibration for five-axis flank milling. Int J Adv Manuf Technol 125(7–8):3159–3169. https://doi.org/10.1007/S00170-023-10894-4

    Article  Google Scholar 

  67. Tong X, Liu Q, Wang LQ, Sun PP (2023) A parameter optimization method for chatter stability in five-axis milling. Machines 11(1):79–79. https://doi.org/10.3390/MACHINES11010079

    Article  Google Scholar 

  68. Xiong GL, Yi JM, Zeng C, Guo HK, Li LX (2003) Study of the gyroscopic effect of the spindle on the stability characteristics of the milling system. J Mater Process Tech 138(1):379–384. https://doi.org/10.1016/S0924-0136(03)00102-X

    Article  Google Scholar 

  69. Movahhedy MR, Mosaddegh P (2005) Prediction of chatter in high speed milling including gyroscopic effects. Int J Mach Tools Manuf 46(9):996–1001. https://doi.org/10.1016/j.ijmachtools.2005.07.043

    Article  Google Scholar 

  70. Sun SS, Tang WX, Huang HF, Xu XQ (2009) Dynamics and stability of milling process considering the gyroscopic effects. Adv Mater Res 849(76–78):624–629. https://doi.org/10.4028/www.scientific.net/AMR.76-78.624

    Article  Google Scholar 

  71. Altıntas Y, Engin S, Budak E (1999) Analytical stability prediction and design of variable pitch cutters. J Manuf Sci Eng 121(2):173–178. https://doi.org/10.1115/1.2831201

    Article  Google Scholar 

  72. Budak E (2003) An analytical design method for milling cutters with nonconstant pitch to increase stability, part I: theory. J Manuf Sci Eng 125(1):29–34. https://doi.org/10.1115/1.1536655

    Article  Google Scholar 

  73. Budak E (2003) An analytical design method for milling cutters with nonconstant pitch to increase stability, part 2: application. J Manuf Sci Eng 125(1):35–38. https://doi.org/10.1115/1.1536656

    Article  Google Scholar 

  74. Turner S, Merdol D, Altintas Y, Ridgway K (2006) Modelling of the stability of variable helix end mills. Int J Mach Tools Manuf 47(9):1410–1416. https://doi.org/10.1016/j.ijmachtools.2006.08.028

    Article  Google Scholar 

  75. Dombovari Z, Stepan G (2012) The effect of helix angle variation on milling stability. J Manuf Sci Eng 134(5):1–6. https://doi.org/10.1115/1.4007466

    Article  Google Scholar 

  76. Sellmeier V, Denkena B (2010) Stable islands in the stability chart of milling processes due to unequal tooth pitch. Int J Mach Tools Manuf 51(2):152–164. https://doi.org/10.1016/j.ijmachtools.2010.09.007

    Article  Google Scholar 

  77. Otto A, Rauh S, Ihlenfeldt S, Radons G (2017) Stability of milling with non-uniform pitch and variable helix Tools. Int J Adv Manuf Technol 89(9–12):2613–2625. https://doi.org/10.1007/s00170-016-9762-2

    Article  Google Scholar 

  78. Guo Y, Lin B, Wang WQ (2019) Optimization of variable helix cutter for improving chatter stability. Int J Adv Manuf Technol 104(5–8):2553–2565. https://doi.org/10.1007/s00170-019-03927-4

    Article  Google Scholar 

  79. Zhao MX, Balachandran B (2001) Dynamics and stability of milling process. Int J Solids Struct 38(10):2233–2248. https://doi.org/10.1016/S0020-7683(00)00164-5

    Article  Google Scholar 

  80. Balachandran B, Zhao MX (2000) A mechanics based model for study of dynamics of milling operations. Meccanica 35(2):89–109. https://doi.org/10.1023/A:1004887301926

    Article  Google Scholar 

  81. Liu T, Deng ZH, Lv LS, She SL, Liu W, Luo CY (2020) Experimental analysis of process parameter effects on vibrations in the high-speed grinding of a camshaft. Strojniški Vestnik-J Mech Eng 66(3):175–183. https://doi.org/10.5545/sv-jme.2019.6294

    Article  Google Scholar 

  82. Li HQ, Shin YC (2006) Wheel regenerative chatter of surface grinding. J Manuf Sci Eng 128(2):393–403. https://doi.org/10.1115/1.2137752

    Article  Google Scholar 

  83. Yaser M, Keivan A (2022) Finite-amplitude stability in regenerative chatter: the effect of process damping nonlinearity and intermittent cutting in turning. J Sound Vib 537:117158. https://doi.org/10.1016/J.JSV.2022.117158

    Article  Google Scholar 

  84. Balachandran B (2001) Nonlinear dynamics of milling processes. Philos Trans: Math Phys Eng Sci 359(1781):793–819. https://doi.org/10.1098/rsta.2000.0755

    Article  ADS  Google Scholar 

  85. Banihasan M, Bakhtiari-Nejad F (2011) Chaotic vibrations in high-speed milling. Nonlinear Dyn 66(4):557–574. https://doi.org/10.1007/s11071-010-9935-8

    Article  Google Scholar 

  86. Rahnama R, Sajjadi M, Park SS (2009) Chatter suppression in micro end milling with process damping. J Mater Process Tech 209(17):5766–5776. https://doi.org/10.1016/j.jmatprotec.2009.06.009

    Article  CAS  Google Scholar 

  87. Afazov SM, Ratchev SM, Segal J, Popov AA (2012) Chatter modelling in micro-milling by considering process nonlinearities. Int J Mach Tools Manuf 56:28–38. https://doi.org/10.1016/j.ijmachtools.2011.12.010

    Article  Google Scholar 

  88. Afazov SM, Zdebski D, Ratchev SM, Segal J, Liu S (2012) Effects of micro-milling conditions on the cutting forces and process stability. J M Process Tech 213(5):671–684. https://doi.org/10.1016/j.jmatprotec.2012.12.001

    Article  Google Scholar 

  89. Jin XL, Altintas Y (2013) Chatter stability model of micro-milling with process damping. J Manuf Sci Eng 135(3):1–9. https://doi.org/10.1115/1.4024038

    Article  Google Scholar 

  90. Song QH, Liu ZQ, Shi ZY (2014) Chatter stability for micromilling processes with flat end mill. Int J Adv Manuf Technol 71(5–8):1159–1174. https://doi.org/10.1007/s00170-013-5554-0

    Article  Google Scholar 

  91. Eynian M, Magnevall M, Cedergren S, Wretland A, Lundblad M (2018) New methods for in-process identification of modal parameters in milling. Procedia CIRP 77:469–472. https://doi.org/10.1016/j.procir.2018.08.269

    Article  Google Scholar 

  92. Pour M, Torabizadeh MA (2016) Improved prediction of stability lobes in milling process using time series analysis. J Intell Manuf 27(3):665–677. https://doi.org/10.1007/s10845-014-0904-9

    Article  Google Scholar 

  93. Mithilesh KD, Asit BP, Atanu M (2017) Chatter and dynamic cutting force prediction in high-speed ball end milling. Mach Sci Technol 21(2):291–312. https://doi.org/10.1080/10910344.2017.1284560

    Article  Google Scholar 

  94. Qu XT, Zang JH, Wang X (2018) Analysis and research on the modal experiment of series-parallel hybrid grinding and polishing machine. MATEC Web Conf 175:02018. https://doi.org/10.1051/matecconf/201817502018

    Article  Google Scholar 

  95. Liu T, Deng ZH, Luo CY, Lv LS, Li CY, Wan LL (2021) Stability modeling and analysis of non-circular high-speed grinding with consideration of dynamic grinding depth. J Mech Eng 57(15):264–274. https://doi.org/10.3901/JME.2021.15.264

    Article  Google Scholar 

  96. Eynian M (2019) In-process identification of modal parameters using dimensionless relationships in milling chatter. Int J Mach Tools Manuf 143:49–62. https://doi.org/10.1016/j.ijmachtools.2019.04.003

    Article  Google Scholar 

  97. Kolář P, Janota M, Švéda J, Kozlok T (2021) Method for safe experimental testing of machine tool usable spindle power. MM Sci J 11:5167–5174. https://doi.org/10.17973/MMSJ.2021_11_2021176

    Article  Google Scholar 

  98. Li XZ, Yue XB, Huang W, Dong XJ, Peng ZK (2019) Vibration response transmissibility and operational modal analysis methods: a review and comparative study. J Vib Shock 38(18):24–34+45. https://doi.org/10.13465/j.cnki.jvs.2019.18.004

    Article  CAS  Google Scholar 

  99. Guo ML, Wei ZC, Wang MJ, Li SQ, Wang J, Liu SX (2020) Modal parameter identification of general cutter based on milling stability theory. J Intell Manuf 32:1–15. https://doi.org/10.1007/s10845-020-01569-y

    Article  Google Scholar 

  100. Zaghbani I, Songmene V (2009) Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis. Int J Mach Tools Manuf 49(12):947–957. https://doi.org/10.1016/j.ijmachtools.2009.06.010

    Article  Google Scholar 

  101. Mao XY, Luo B, Li B, Cai H, Liu HQ, Pen FY (2014) An approach for measuring the FRF of machine tool structure without knowing any input force. Int J Mach Tools Manuf 86:62–67. https://doi.org/10.1016/j.ijmachtools.2014.07.004

    Article  Google Scholar 

  102. Yin L, Li CH, Qin C, Peng YL, Gu JR, Zhang F, Li S, Song ZQ (2020) Identification method of modal parameters of machine tools under periodic cutting excitation. IEEE Access 8:120850–120858. https://doi.org/10.1109/access.2020.3006226

    Article  Google Scholar 

  103. Yuan JC, Li JS, Wei W, Liu PK (2022) Operational modal identification of ultra-precision fly-cutting machine tools based on least-squares complex frequency-domain method. Int J Adv Manuf Technol 119:4385–4394. https://doi.org/10.1007/S00170-021-08469-2

    Article  Google Scholar 

  104. Liu DS, Luo M, Zhang Z, Hu Y, Zhang DH (2022) Operational modal analysis based dynamic parameters identification in milling of thin-walled workpiece. Mech Syst Sig Process 167(PA):108469. https://doi.org/10.1016/J.YMSSP.2021.108469

    Article  Google Scholar 

  105. Pedrammehr S, Farrokhi H, Rajab AKS, Pakzad S, Mahboubkhah M, Ettefagh MM, Sadeghi MH (2011) Modal analysis of the milling machine structure through FEM and experimental test. Adv Mater Res 383–390:6717–6721. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.383-390.6717

    Article  Google Scholar 

  106. Pakzad S, Rajab AKS, Mahboubkhah M, Ettefagh MM (1936) Masoudi O (2012) Modal analysis of the surface grinding machine structure through FEM and experimental test. Adv Mater Res 566:353–356. https://doi.org/10.4028/www.scientific.net/AMR.566.353

    Article  Google Scholar 

  107. Mahboubkhah M, Pakzad S, Arasi AG, Ettefagh MM (2017) Modal analysis of the vertical moving table of 4-DOF parallel machine tool by FEM and experimental test. J Vibroeng 19(7):5301–5309. https://doi.org/10.21595/jve.2017.18394

    Article  Google Scholar 

  108. Ramos JC, Vinolas J, Nieto FJ (2001) A simplified methodology to determine the cutting stiffness and the contact stiffness in the plunge grinding process. Int J Mach Tools Manuf 41(1):33–49. https://doi.org/10.1016/S0890-6955(00)00062-6

    Article  Google Scholar 

  109. Chi YL, Li HL (2016) Study on Contact stiffness and natural frequency cylindrical plunge grinding. Chin Mech Eng 27(10):1294–1298. https://doi.org/10.3969/j.issn.1004-132X.2016.10.003

    Article  Google Scholar 

  110. Chi YL, Li HL, Chen X (2017) In-process monitoring and analysis of bearing outer race way grinding based on the power signal. Proc Inst Mech Eng Part B: J Eng Manuf 231(14):2622–2635. https://doi.org/10.1177/0954405416635032

    Article  Google Scholar 

  111. An Q, Suo SF, Lin FY, Shi JW (2019) A novel micro-contact stiffness model for the grinding surfaces of steel materials based on cosine curve-shaped asperities. Materials 12(21):3561–3561. https://doi.org/10.3390/ma12213561

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  112. Liu Y, An Q, Shang DY, Bai L, Huang M, Huang SQ (2022) Research on normal contact stiffness of rough joint surfaces machined by turning and grinding. Metals 12(4):1–14. https://doi.org/10.3390/MET12040669

    Article  CAS  Google Scholar 

  113. Zhang C, Yu WN, Yin L, Zeng Q, Chen ZX, Shao YM (2023) Modeling of normal contact stiffness for surface with machining textures and analysis of its influencing factors. Int J Solids Struct 262–263:112042. https://doi.org/10.1016/J.IJSOLSTR.2022.112042

    Article  Google Scholar 

  114. Merritt HE (1965) Theory of self-excited machine-tool chatter: contribution to machine-tool chatter research-1. J Eng Ind 87(4):447–454. https://doi.org/10.1115/1.3670861

    Article  Google Scholar 

  115. Tobias SA (1965) Machine tool vibration. Blackie and Sons Ltd Press, New York

  116. Gao C (2020) Grinding force modeling and experimental analysis based on axial feed grinding of hard and brittle materials. Dissertation, Wenzhou University

  117. Liu AM, Peng C, Liu JZ, Kruth JP, Vanherck P (2007) Diagnosis of chatter during high-speed milling and forecast of stable machining areas. J Mech Eng 01:164–169. https://doi.org/10.3321/j.issn:0577-6686.2007.01.027

    Article  Google Scholar 

  118. Quintana G, Ciurana J, Teixidor D (2008) A new experimental methodology for identification of stability lobes diagram in milling operations. Int J Mach Tools Manuf 48(15):1637–1645. https://doi.org/10.1016/j.ijmachtools.2008.07.006

    Article  Google Scholar 

  119. Zhang HB, Li L, Feng D, Li JG, Miao EM (2020) Fast drawing method of chatter lobe based on modal parameter and milling experiment. Tool Eng 54(11):108–111. https://doi.org/10.3969/j.issn.1000-008.2020.11.025

    Article  Google Scholar 

  120. Peng C, Wang L, Liao TW (2015) A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine. J Sound Vib 354:118–131. https://doi.org/10.1016/j.jsv.2015.06.011

    Article  ADS  Google Scholar 

  121. Friedrich J, Hinze C, Renner A, Verl A, Lechler A (2017) Estimation of stability lobe diagrams in milling with continuous learning algorithms. Robot Comput Integr Manuf 43:124–134. https://doi.org/10.1016/j.rcim.2015.10.003

    Article  Google Scholar 

  122. Friedrich J, Torzewski J, Verl A (2018) Online learning of stability lobe diagrams in milling. Procedia CIRP 67:278–283. https://doi.org/10.1016/j.procir.2017.12.213

    Article  Google Scholar 

  123. Denkena B, Bergmann B, Reimer S (2020) Analysis of different machine learning algorithms to learn stability lobe diagrams. Procedia CIRP 88(C):282–287. https://doi.org/10.1016/j.procir.2020.05.049

    Article  Google Scholar 

  124. Ma YC, Yang JG (2015) Multi-sensor intelligent monitoring of high-speed grinding for brittle and hard materials. Appl Mech Mater 3844(741–741):309–314. https://doi.org/10.4028/www.scientific.net/AMM.741.309

    Article  Google Scholar 

  125. Luo Z, Wang JW, Han QK, Wang DY (2021) Review on dynamics of the combined support-rotor system. J Mech Eng 57(07):44–60. https://doi.org/10.3901/JME.2021.07.044

    Article  Google Scholar 

  126. Altintaş Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann Manuf Technol 44(1):357–362. https://doi.org/10.1016/S0007-8506(07)62342-7

    Article  Google Scholar 

  127. Budak E, Ozlu E (2007) Analytical Modeling of chatter stability in turning and boring operations: a multi-dimensional approach. CIRP Ann Manuf Technol 56(1):401–404. https://doi.org/10.1016/j.cirp.2007.05.093

    Article  Google Scholar 

  128. Ozlu E, Budak E (2007) Analytical modeling of chatter stability in turning and boring operations-part II: experimental verification. J Manuf Sci Eng 129(4):733–739. https://doi.org/10.1115/1.2738119

    Article  Google Scholar 

  129. Bravo U, Altuzarra O, López de Lacalle LN, Sánchez JA, Campa FJ (2005) Stability limits of milling considering the flexibility of the workpiece and the machine. Int J Mach Tools Manuf 45(15):1669–1680. https://doi.org/10.1016/j.ijmachtools.2005.03.004

    Article  Google Scholar 

  130. Wan M, Ma YC, Zhang WH, Yang Y (2015) Study on the construction mechanism of stability lobes in milling process with multiple modes. Int J Adv Manuf Technol 79(1–4):589–603. https://doi.org/10.1007/s00170-015-6829-4

    Article  Google Scholar 

  131. Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling-part I: general formulation. J Dyn Syst Meas Contr 120(1):22–30. https://doi.org/10.1115/1.2801317

    Article  Google Scholar 

  132. Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling-part II: application of the general formulation to common milling systems. J Dyn Syst Meas Contr 120(1):31–36. https://doi.org/10.1115/1.2801318

    Article  Google Scholar 

  133. Merdol SD, Altintas Y (2004) Multi frequency solution of chatter stability for low immersion milling. J Manuf Sci Eng 126(3):459–466. https://doi.org/10.1115/1.1765139

    Article  Google Scholar 

  134. Bachrathy D, Stepan G (2013) Improved prediction of stability lobes with extended multi frequency solution. CIRP Ann Manuf Technol 62(1):411–414. https://doi.org/10.1016/j.cirp.2013.03.085

    Article  Google Scholar 

  135. Tang AJ, Liu ZQ (2009) Three-dimensional stability lobe and maximum material removal rate in end milling of thin-walled plate. Int J Adv Manuf Technol 43(1/2):33–39. https://doi.org/10.1007/s00170-008-1695-y

    Article  Google Scholar 

  136. Wang MH, Gao L, Zhang YH (2014) Prediction of regenerative chatter in the high-speed vertical milling of thin-walled workpiece made of titanium alloy. Int J Adv Manuf Technol 72:707–716. https://doi.org/10.1007/s00170-014-5641-x

    Article  Google Scholar 

  137. Yan BL, Zhu LD (2019) Research on milling stability of thin-walled parts based on improved multi-frequency solution. Int J Adv Manuf Technol 102(1):431–441. https://doi.org/10.1007/s00170-018-03254-0

    Article  Google Scholar 

  138. Smith S, Tlusty J (1993) Efficient simulation programs for chatter in milling. CIRP Ann 42(1):463–466. https://doi.org/10.1016/S0007-8506(07)62486-X

    Article  Google Scholar 

  139. Campomanes ML, Altintas Y (2003) An improved time domain simulation for dynamic milling at small radial immersions. J Manuf Sci Eng 125(3):416–422. https://doi.org/10.1115/1.1580852

    Article  Google Scholar 

  140. Li HZ, Li XP, Chen XQ (2003) A novel chatter stability criterion for the modelling and simulation of the dynamic milling process in the time domain. Int J Adv Manuf Technol 22(9–10):619–625. https://doi.org/10.1007/s00170-003-1562-9

    Article  Google Scholar 

  141. Schmitz TL, Medicus K, Dutterer B (2002) Exploring once-per-revolution audio signal variance as a chatter. Mach Sci Technol 6(2):215–233. https://doi.org/10.1081/MST-120005957

    Article  Google Scholar 

  142. Li ZQ, Liu Q (2008) Solution and analysis of chatter stability for end milling in the time-domain. Chin J Aeronaut 21(2):169–178. https://doi.org/10.1016/S1000-9361(08)60022-9

    Article  MathSciNet  Google Scholar 

  143. Sims ND (2005) The self-excitation damping ratio: a chatter criterion for time-domain milling simulations. J Manuf Sci Eng 127(3):433–445. https://doi.org/10.1115/1.1948393

    Article  Google Scholar 

  144. Rott O (2011) Simulation and stability of milling processes. University library of the Technical University Press, Berlin

  145. Ma YC, Wan M, Zhang WH (2016) Time domain simulation of milling chatter stability. Mater Sci Forum 3901(836–837):94–98. https://doi.org/10.4028/www.scientific.net/MSF.836-837.94

    Article  Google Scholar 

  146. Chen Y, Hou L, Liu WZ, Pu XJ (2021) Chatter stability prediction in low immersion milling based on time-domain simulation. Int J Adv Manuf Technol 57(03):98–106. https://doi.org/10.3901/JME.2021.03.098

    Article  Google Scholar 

  147. Insperger T, Stepan G (2002) Semi-discretization method for delayed systems. Int J Numer Meth Eng 55(5):503–518. https://doi.org/10.1002/nme.505

    Article  MathSciNet  Google Scholar 

  148. Insperger T, Stepan G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Meth Eng 61:117–141. https://doi.org/10.1002/nme.1061

    Article  MathSciNet  Google Scholar 

  149. Wan M, Zhang WH, Dang JW, Yang Y (2010) A unified stability prediction method for milling process with multiple delays. Int J Mach Tools Manuf 50(1):29–41. https://doi.org/10.1016/j.ijmachtools.2009.09.009

    Article  Google Scholar 

  150. Wan M, Ma YC, Zhang WH, Yang Y (2015) Study on the construction mechanism of stability lobes in milling process with multiple modes. Int J Adv Manuf Technol 79:589–603. https://doi.org/10.1007/s00170-015-6829-4

    Article  Google Scholar 

  151. Alvarez J, Zatarain M, Barrenetxea D, Ortega N, Gallego I (2013) Semi-discretization for stability analysis of in-feed cylindrical grinding with continuous workpiece speed variation. Int J Adv Manuf Technol 69(1–4):113–120. https://doi.org/10.1007/s00170-013-4993-y

    Article  Google Scholar 

  152. Insperger T, Stépán G, Turi J (2007) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313(1):334–341. https://doi.org/10.1016/j.jsv.2007.11.040

    Article  ADS  Google Scholar 

  153. Li ZW, Long XH, Meng G (2009) Stability analysis of milling process by semi-discretization method based on Magnus-Gaussian truncation. J Vib Shock 28(05):69–73205. https://doi.org/10.13465/j.cnki.jvs.2009.05.002

    Article  Google Scholar 

  154. Jiang S, Sun Y, Yuan X, Liu W (2017) A second-order semi-discretization method for the efficient and accurate stability prediction of milling process. Int J Adv Manuf Technol 92(1–4):583–595. https://doi.org/10.1007/s00170-017-0171-y

    Article  Google Scholar 

  155. Zhang CF, Yan ZH, Jiang XG (2021) Numerical integration scheme–based semi-discretization methods for stability prediction in milling. Int J Adv Manuf Technol 115:397–411. https://doi.org/10.1007/S00170-021-07069-4

    Article  Google Scholar 

  156. Liu KN, Zhang Y, Gao XY, Yang WX, Sun W, Dai F (2021) Improved semi-discretization method based on predictor-corrector scheme for milling stability analysis. Int J Adv Manuf Technol 114(11-12):1–13. https://doi.org/10.1007/S00170-021-06747-7

  157. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(5):502–509. https://doi.org/10.1016/j.ijmachtools.2010.01.003

    Article  Google Scholar 

  158. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) Second-order full-discretization method for milling stability prediction. Int J Mach Tools Manuf 50(10):926–932. https://doi.org/10.1016/j.ijmachtools.2010.05.005

    Article  Google Scholar 

  159. Quo Q, Sun YW, Jiang Y (2012) On the accurate calculation of milling stability limits using third-order full-discretization method. Int J Mach Tools Manuf 62:61–66. https://doi.org/10.1016/j.ijmachtools.2012.05.001

    Article  Google Scholar 

  160. Liu YL, Zhang DH, Wu BH (2012) An efficient full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 63:44–48. https://doi.org/10.1016/j.ijmachtools.2012.07.008

    Article  Google Scholar 

  161. Tang XW, Pen FY, Yan R, Gong YT, Li YT, Jiang LL (2017) Accurate and efficient prediction of milling stability with updated full-discretization method. Int J Adv Manuf Technol 88(9–12):2357–2368. https://doi.org/10.1007/s00170-016-8923-7

    Article  Google Scholar 

  162. Yan ZH, Wang XB, Liu ZB, Wang DQ, Jia L, Ji YJ (2017) Third-order updated full-discretization method for milling stability prediction. Int J Adv Manuf Technol 92(5–8):2299–2309. https://doi.org/10.1007/s00170-017-0243-z

    Article  Google Scholar 

  163. Ji YJ, Wang XB, Liu ZB, Wang HJ, Yan ZH (2018) An updated full-discretization milling stability prediction method based on the higher-order Hermite-Newton interpolation polynomial. Int J Adv Manuf Technol 95(5):2227–2242. https://doi.org/10.1007/s00170-017-1409-4

    Article  Google Scholar 

  164. Wu Y, You YP, Jiang JJ (2020) New predictor-corrector methods based on piecewise polynomial interpolation for milling stability prediction. Mach Sci Technol 24(5):688–718. https://doi.org/10.1080/10910344.2020.1752235

    Article  Google Scholar 

  165. Huang C, Yang WA, Cai X, Liu W, You Y (2020) An efficient third-order full-discretization method for prediction of regenerative chatter stability in milling. Shock Vib 2020:1–16. https://doi.org/10.1155/2020/9071451

    Article  Google Scholar 

  166. Ji YJ, Wang LY, Song Y, Wang HJ, Liu ZB (2022) Investigation of robotic milling chatter stability prediction under different cutter orientations by an updated full-discretization method. J Sound Vib 536:117150. https://doi.org/10.1016/J.JSV.2022.117150

    Article  Google Scholar 

  167. Ozoegwu CG (2014) Least squares approximated stability boundaries of milling process. Int J Mach Tools Manuf 79:24–30. https://doi.org/10.1016/j.ijmachtools.2014.02.001

    Article  Google Scholar 

  168. Ozoegwu CG, Omenyi SN, Ofochebe SM (2015) Hyper-third order full-discretization methods in milling stability prediction. Int J Mach Tools Manuf 92:1–9. https://doi.org/10.1016/j.ijmachtools.2015.02.007

    Article  Google Scholar 

  169. Yan ZH, Wang XB, Liu ZB, Wang DQ, Ji YJ, Jiao L (2017) Orthogonal polynomial approximation method for stability prediction in milling. Int J Adv Manuf Technol 91(9–12):4313–4330. https://doi.org/10.1007/s00170-017-0067-x

    Article  Google Scholar 

  170. Li MZ, Zhang GJ, Huang Yu (2013) Complete discretization scheme for milling stability prediction. Nonlinear Dyn 71(1–2):187–199. https://doi.org/10.1007/s11071-012-0651-4

    Article  MathSciNet  Google Scholar 

  171. Niu JB, Ding Y, Zhu LM, Ding H (2014) Runge-Kutta methods for a semi-analytical prediction of milling stability. Nonlinear Dyn 76(1):289–304. https://doi.org/10.1007/s11071-013-1127-x

    Article  MathSciNet  Google Scholar 

  172. Li ZQ, Yang ZK, Peng YR, Zhu F, Ming XZ (2016) Prediction of chatter stability for milling process using Runge-Kutta-based complete discretization method. Int J Adv Manuf Technol 86(1–4):943–952. https://doi.org/10.1007/s00170-015-8207-7

    Article  Google Scholar 

  173. Bayly PV, Halley JE, Mann BP, Davies MA (2003) Stability of interrupted cutting by temporal finite element analysis. Trans ASME-J Manuf Sci Eng 125:220–225. https://doi.org/10.1115/1.1556860

    Article  Google Scholar 

  174. Sims ND, Mann BP, Huyanan S (2008) Analytical prediction of chatter stability for variable pitch and variable helix milling tools. J Sound Vib 317(3):664–686. https://doi.org/10.1016/j.jsv.2008.03.045

    Article  ADS  Google Scholar 

  175. Mann BP, Edes BT, Easley SJ, Young KA, Ma K (2008) Chatter vibration and surface location error prediction for helical end mills. Int J Mach Tools Manuf 48(3):350–361. https://doi.org/10.1016/j.ijmachtools.2007.10.003

    Article  Google Scholar 

  176. Ding Y, Zhu LM, Zhang XJ, Ding H (2011) Numerical integration method for prediction of milling stability. J Manuf Sci Eng 133(3):1–9. https://doi.org/10.1115/1.4004136

    Article  Google Scholar 

  177. Ding Y, Zhu LM, Zhang XJ, Ding H (2011) Milling stability analysis using the spectral method. Sci Chin Technol Sci 54(12):3130–3136. https://doi.org/10.1007/s11431-011-4611-x

    Article  Google Scholar 

  178. Zhang XJ, Xiong CH, Ding Y, Xiong YL (2011) Variable-step integration method for milling chatter stability prediction with multiple delays. Sci Chin Technol Sci 54(12):3137–3154. https://doi.org/10.1007/s11431-011-4599-2

    Article  Google Scholar 

  179. Ding Y, Zhu LM, Zhang XJ, Ding H (2013) Stability analysis of milling via the differential quadrature method. J Manuf Sci Eng 135(4):044502. https://doi.org/10.1115/1.4024539

    Article  Google Scholar 

  180. Zhang Z, Li HG, Meng G, Li C (2015) A novel approach for the prediction of the milling stability based on the Simpson method. Int J Mach Tools Manuf 99:43–47. https://doi.org/10.1016/j.ijmachtools.2015.09.002

    Article  CAS  Google Scholar 

  181. Zhang XJ, Xiong CH, Ding Y, Ding H (2017) Prediction of chatter stability in high speed milling using the numerical differentiation method. Int J Adv Manuf Technol 89(9–12):2535–2510. https://doi.org/10.1007/s00170-016-8708-z

    Article  Google Scholar 

  182. Qin CJ, Tao JF, Liu CJ (2017) Stability analysis for milling operations using an Adams-Simpson-based method. Int J Adv Manuf Technol 92(1–4):969–979. https://doi.org/10.1007/s00170-017-0186-4

    Article  Google Scholar 

  183. Qin CJ, Tao JF, Li L, Liu CJ (2017) An Adams-Moulton-based method for stability prediction of milling processes. Int J Adv Manuf Technol 89(9–12):3049–3058. https://doi.org/10.1007/s00170-016-9293-x

    Article  Google Scholar 

  184. Dai YB, Li HK, Xing XY, Hao BT (2018) Prediction of chatter stability for milling process using precise integration method. Precis Eng 52:152–157. https://doi.org/10.1016/j.precisioneng.2017.12.003

    Article  Google Scholar 

  185. Li HK, Dai YB, Fan ZF (2019) Improved precise integration method for chatter stability prediction of two-DOF milling system. Int J Adv Manuf Technol 101(5):1235–1246. https://doi.org/10.1007/s00170-018-2981-y

    Article  Google Scholar 

  186. Zhi HY, Zhang TS, Du J, Yan XG (2020) An efficient full-discretization method for milling stability prediction. Int J Adv Manuf Technol 107:1–13. https://doi.org/10.1007/s00170-020-05290-1

    Article  Google Scholar 

  187. Dong XF, Qiu ZZ (2020) Stability analysis in milling process based on updated numerical integration. Mech Syst Sig Process 137(C):106435. https://doi.org/10.1016/j.ymssp.2019.106435

    Article  Google Scholar 

  188. Xia Y, Wan Y, Su GS, Du J, Zhang PR, Xu CH (2022) An improved numerical integration method for prediction of milling stability using the Lagrange-Simpson interpolation scheme. Int J Adv Manuf Technol 120(11–12):8105–8115. https://doi.org/10.1007/S00170-022-09245-6

    Article  Google Scholar 

  189. Liu WC, Yang WA, Chen YX, You YP (2022) A novel precise integration-based updated numerical integration method for milling stability prediction. Int J Adv Manuf Technol 124(7–8):2109–2126. https://doi.org/10.1007/S00170-022-10372-3

    Article  Google Scholar 

  190. Junior MV, Baptista EA, Araki L, Smith S, Schmitz T (2018) The role of tool presetting in milling stability uncertainty. Proc Manuf 26:164–172. https://doi.org/10.1016/j.promfg.2018.07.023

    Article  Google Scholar 

  191. Liu Y, Li TX, Liu K, Zhang YM (2016) Chatter reliability prediction of turning process system with uncertainties. Mech Syst Signal Process 66–67:232–247. https://doi.org/10.1016/j.ymssp.2015.06.030

    Article  ADS  Google Scholar 

  192. Feng JL, Sun ZL, Sun HZ, Chai XD (2015) Investigation of the milling chatter and its probability. Modul Mach Tool Autom Manuf Tech 12:8–11. https://doi.org/10.13462/j.cnki.mmtamt.2015.12.003

    Article  Google Scholar 

  193. Huang XZ, Hu S, Zhang YM (2017) On the calculation method for the reliability of chatter stability in CNC milling. J Northe Univ (Nat Sci) 38(05):675–679. https://doi.org/10.3969/j.issn.1005-3026.2017.05.014

    Article  Google Scholar 

  194. Huang XZ, Xu YC, Zhang YM, Tan XF (2016) Simulation of chatter stability reliability in turning machining monte carlo method. J Vib Meas Diagn 36(03):484–487+603. https://doi.org/10.16450/j.cnki.issn.1004-6801.2016.03.012

    Article  Google Scholar 

  195. Löser M, Otto A, Ihlenfeldt S, Radons G (2018) Chatter prediction for uncertain parameters. Adv Manuf 6(3):319–333. https://doi.org/10.1007/s40436-018-0230-0

    Article  CAS  Google Scholar 

  196. Zhang N, Shi YY, Chen Z, Chen HX, Liu J, Zhao P (2021) Chatter reliability prediction of overall leaf disc side milling. J Northw Polytech Univ 39(01):111–118. https://doi.org/10.1051/jnwpu/20213910111

    Article  CAS  Google Scholar 

  197. Jiang GJ, Wu DW, Zhang N, Wu JX, Wang Y (2020) Chatter reliability prediction of side milling aero-engine blisk. J Mech Sci Technol 34(10):1–9. https://doi.org/10.1007/s12206-020-2211-z

    Article  Google Scholar 

  198. Sun C, Niu Y, Liu WY, Xiu S (2017) Study on the surface topography considering grinding chatter based on dynamics and reliability. Int J Adv Manuf Technol 92(9–12):1–14. https://doi.org/10.1007/s00170-017-0385-z

    Article  CAS  Google Scholar 

  199. Huang XZ, Zhang YM, Lv CM (2016) Probabilistic analysis of dynamic stability for milling process. Nonlinear Dyn 86(3):2105–2114. https://doi.org/10.1007/s11071-016-3019-3

    Article  Google Scholar 

  200. Huang XZ, Zhang YM, Lv CM (2016) Probabilistic analysis of chatter stability in turning. Int J Adv Manuf Technol 87(9–12):3225–3232. https://doi.org/10.1007/s00170-016-8672-7

    Article  Google Scholar 

  201. Liu Y, Meng LL, Liu K, Zhang YM (2016) Chatter reliability of milling system based on first-order second-moment method. Int J Adv Manuf Technol 87(1–4):1–9. https://doi.org/10.1007/s00170-016-8523-6

    Article  Google Scholar 

  202. Liu Y, He FX (2019) Study on the chatter Stability of robotic milling based on the probability method. J Northe Univ (Nat Sci) 40(05):683–687. https://doi.org/10.12068/j.issn.1005-3026.2019.05.015

    Article  Google Scholar 

  203. Liu Y, Wang ZY, Liu K, Zhang YM (2017) Chatter stability prediction in milling using time-varying uncertainties. Int J Adv Manuf Technol 89(9–12):2627–2636. https://doi.org/10.1007/s00170-016-9856-x

    Article  Google Scholar 

  204. Li K, He SP, Liu HQ, Mao XY, Li B, Luo B (2020) Bayesian uncertainty quantification and propagation for prediction of milling stability lobe. Mech Syst Sig Process 138(C):106532. https://doi.org/10.1016/j.ymssp.2019.106532

    Article  Google Scholar 

  205. Duncan GS, Kurdi MH, Schmitz TL (2006) Uncertainty propagation for selected analytical milling stability limit analyses. North American Manufacturing Research Conference, Florida

  206. Zhang XM, Zhu LM, Zhang D, Ding H, Xiong YL (2012) Numerical robust optimization of spindle speed for milling process with uncertainties. Int J Mach Tools Manuf 61:9–19. https://doi.org/10.1016/j.ijmachtools.2012.05.002

    Article  Google Scholar 

  207. Sims ND, Manson G, Mann B (2009) Fuzzy stability analysis of regenerative chatter in milling. J Sound Vib 329(8):1025–1041. https://doi.org/10.1016/j.jsv.2009.10.024

    Article  ADS  Google Scholar 

  208. Hamann D, Walz NP, Fischer A, Hanss M, Eberhard P (2018) Fuzzy arithmetical stability analysis of uncertain machining systems. Mech Syst Signal Process 98:534–547. https://doi.org/10.1016/j.ymssp.2017.05.012

    Article  ADS  Google Scholar 

  209. Yan Y, Xu J, Wiercigroch M (2017) Regenerative chatter in a plunge grinding process with workpiece imbalance. Int J Adv Manuf Technol 89(9–12):2845–2862. https://doi.org/10.1007/s00170-016-9830-7

    Article  Google Scholar 

  210. Ding WF, Cao Y, Zhao B, Xu JH (2022) Research status and future prospects of ultrasonic vibration-assisted grinding technology and equipment. Journal of Mechanical Engineering 58(09):244–269. https://doi.org/10.3901/JME.2019.01.189

    Article  Google Scholar 

  211. Sonia P, Jain JK, Saxena KK (2021) Influence of ultrasonic vibration assistance in manufacturing processes: a review. Mater Manuf Process 36(13):1451–1475. https://doi.org/10.1080/10426914.2021.1914843

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Special Fund for the Construction of Hunan Innovative Province (grant no. 2022GK4025), Hunan Provincial Innovation Foundation for Postgraduate (grant no. CX20221043), and the Natural Science Foundation of Hunan Province (grant no. 2020JJ4309).

Author information

Authors and Affiliations

Authors

Contributions

Xianyang Zhang and Linlin Wan provided ideas for the paper; Xianyang Zhang collected data and wrote the paper. Linlin Wan and Xiaoru Ran provided guidance and advice on the whole frame of the paper.

Corresponding author

Correspondence to Linlin Wan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors agree to participate to this study.

Consent for publication

All authors agree to publish to this paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wan, L. & Ran, X. Research progress on the chatter stability in machining systems. Int J Adv Manuf Technol 131, 29–62 (2024). https://doi.org/10.1007/s00170-024-13050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13050-8

Keywords

Navigation