Skip to main content
Log in

Regenerative and frictional chatter in plunge grinding

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies self-excited vibrations, regenerative and frictional chatters, in a plunge grinding process. In consideration of lateral and torsional workpiece movements, a dynamic model with four degrees of freedom is proposed, which involves state-dependent time delays and Stribeck effect for regenerative and frictional effects, respectively. With this model, by linearising contact angle, regenerative grinding depth, frictional velocity and the state-dependent delays, eigenvalue analysis yields stability diagrams for the grinding, where boundaries for both regenerative and frictional instabilities are determined. Then, near the boundaries, simulations and bifurcation analyses are performed to reveal patterns of chatter onset. Bifurcation diagrams show coexistence of stable grinding and the regenerative chatter near the regenerative boundary, and a sudden switch between the stable and the frictionally unstable on the frictional boundary. Moreover, simulation results also show various dynamical properties in the grinding chatters, such as effect of losing contact and stick–slip motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Altintas, Y., Weck, M.: Chatter stability of metal cutting and grinding. CIRP Ann. Manuf. Technol. 53(2), 619–642 (2004). doi:10.1016/S0007-8506(07)60032-8

    Article  Google Scholar 

  2. Armstrong-Hlouvry, B.: Control of Machines with Friction. Kluwer Academic Press, Hingham, MA (1991)

    Book  Google Scholar 

  3. Armstrong-Hlouvry, B., Dupont, P., De Wit, C.C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7), 1083–1138 (1994). doi:10.1016/0005-1098(94)90209-7

    Article  MATH  Google Scholar 

  4. Chung, K.W., Liu, Z.: Nonlinear analysis of chatter vibration in a cylindrical transverse grinding process with two time delays using a nonlinear time transformation method. Nonlinear Dyn. 66, 441–456 (2011). doi:10.1007/s11071-010-9924-y

    Article  MathSciNet  MATH  Google Scholar 

  5. Durgumahanti, U.S.P., Singh, V., Rao, P.V.: A new model for grinding force prediction and analysis. Int. J. Mach. Tools Manuf. 50(3), 231–240 (2010). doi:10.1016/j.ijmachtools.2009.12.004

    Article  Google Scholar 

  6. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  MATH  Google Scholar 

  7. Grabec, I.: Chaos generated by the cutting process. Phys. Lett. A 117(8), 384–386 (1986). doi:10.1016/0375-9601(86)90003-4

    Article  MathSciNet  Google Scholar 

  8. Hastings, W.F., Mathew, P., Oxley, P.L.B.: A machining theory for predicting chip geometry, cutting forces etc. from work material properties and cutting conditions. Proc. R. Soc. Lond. A Math. Phys. Sci. 371(1747), 569–587 (1980)

    Article  Google Scholar 

  9. Hesterman, D., Stone, B.: Improved model of chatter in grinding, including torsional effects. J. Multi-body Dyn. 216, 169–180 (2002)

    Google Scholar 

  10. Kim, P., Jung, J., Lee, S., Seok, J.: Stability and bifurcation analyses of chatter vibrations in a nonlinear cylindrical traverse grinding process. J. Sound Vib. 332(15), 3879–3896 (2013). doi:10.1016/j.jsv.2013.02.009

    Article  Google Scholar 

  11. Li, H.Q., Shin, Y.C.: A time-domain dynamic model for chatter prediction of cylindrical plunge grinding processes. ASME J. Manuf. Sci. Eng. 128(2), 404–415 (2006). doi:10.1115/1.2118748

    Article  Google Scholar 

  12. Lichun, L., Jizai, F., Peklenik, J.: A study of grinding force mathematical model. CIRP Ann. Manuf. Technol. 29(1), 245–249 (1980). doi:10.1016/S0007-8506(07)61330-4

    Article  Google Scholar 

  13. Litak, G., Schubert, S., Radons, G.: Nonlinear dynamics of a regenerative cutting process. Nonlinear Dyn. 69(3), 1255–1262 (2012). doi:10.1007/s11071-012-0344-z. Nonlinear Dyn

    Article  MathSciNet  Google Scholar 

  14. Liu, X., Vlajic, N., Long, X., Meng, G., Balachandran, B.: Nonlinear motions of a flexible rotor with a drill bit: stick-slip and delay effects. Nonlinear Dyn. 72(1–2), 61–77 (2013). doi:10.1007/s11071-012-0690-x

    Article  MathSciNet  Google Scholar 

  15. Liu, X., Vlajic, N., Long, X., Meng, G., Balachandran, B.: Coupled axial-torsional dynamics in rotary drilling with state-dependent delay: stability and control. Nonlinear Dyn. 78(3), 1891–1906 (2014). doi:10.1007/s11071-014-1567-y

    Article  Google Scholar 

  16. Liu, X., Vlajic, N., Long, X., Meng, G., Balachandran, B.: State-dependent delay influenced drill-string oscillations and stability analysis. J. Vib. Acoust. 136(5), 051008 (2014). doi:10.1115/1.4027958

    Article  Google Scholar 

  17. Liu, Y., Pavlovskaia, E., Hendry, D., Wiercigroch, M.: Vibro-impact responses of capsule system with various friction models. Int. J. Mech. Sci. 72, 39–54 (2013). doi:10.1016/j.ijmecsci.2013.03.009

    Article  Google Scholar 

  18. Liu, Z.H., Payre, G.: Stability analysis of doubly regenerative cylindrical grinding process. J. Sound Vib. 301(2), 950–962 (2007). doi:10.1016/j.jsv.2006.10.041

    Article  Google Scholar 

  19. Mannan, M.A., Drew, S.J., Stone, B.J.: Torsional vibration effects in grinding. Ann. CIRP 49, 249–252 (2000)

    Article  Google Scholar 

  20. Nayfeh, A.H.: Order reduction of retarded nonlinear systems—the method of multiple scales versus center-manifold reduction. Nonlinear Dyn. 51, 483–500 (2008). doi:10.1007/s11071-007-9237-y

    Article  MathSciNet  MATH  Google Scholar 

  21. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, Weinheim (2004)

    MATH  Google Scholar 

  22. Rowe, W.B.: Principles of Modern Grinding Technology. William Andrew, Burlington, MA (2009)

    Google Scholar 

  23. Rusinek, R., Kecik, K., Warminski, J., Weremczuk, A.: Dynamic model of cutting process with modulated spindle speed. AIP Conf. Proc. 1493(1), 805–809 (2012). doi:10.1063/1.4765580

    Article  Google Scholar 

  24. Rusinek, R., Wiercigroch, M., Wahi, P.: Influence of tool flank forces on complex dynamics of cutting process. Int. J. Bifurc. Chaos 24(09), 1450,115 (2014). doi:10.1142/S0218127414501156

    Article  MathSciNet  MATH  Google Scholar 

  25. Rusinek, R., Wiercigroch, M., Wahi, P.: Modelling of frictional chatter in metal cutting. Int. J. Mech. Sci. 89, 167–176 (2014). doi:10.1016/j.ijmecsci.2014.08.020

  26. Rusinek, R., Wiercigroch, M., Wahi, P.: Orthogonal cutting process modelling considering tool-workpiece frictional effect. Procedia CIRP 31, 429–434 (2015). doi:10.1016/j.procir.2015.03.033

    Article  Google Scholar 

  27. Thompson, R.A.: On the doubly regenerative stability of a grinder. ASME J. Eng. Ind. 96(1), 275–280 (1974). doi:10.1115/1.3438310

    Article  Google Scholar 

  28. Thompson, R.A.: On the doubly regenerative stability of a grinder: the combined effect of wheel and workpiece speed. ASME J. Eng. Ind. 99(1), 237–241 (1977). doi:10.1115/1.3439144

    Article  Google Scholar 

  29. Thompson, R.A.: On the doubly regenerative stability of a grinder: the mathematica analysis of chatter growth. ASME J. Eng. Ind. 108(2), 83–92 (1986). doi:10.1115/1.3187055

    Article  Google Scholar 

  30. Thompson, R.A.: On the doubly regenerative stability of a grinder: the theory of chatter growth. ASME J. Eng. Ind. 108(2), 75–82 (1986). doi:10.1115/1.3187054

    Article  Google Scholar 

  31. Thompson, R.A.: On the doubly regenerative stability of a grinder: the effect of contact stiffness and wave filtering. ASME J. Eng. Ind. 114(1), 53–60 (1992). doi:10.1115/1.2899758

    Google Scholar 

  32. Weck, M., Hennes, N., Schulz, A.: Dynamic behaviour of cylindrical traverse grinding processes. CIRP Ann. Manuf. Technol. 50(1), 213–216 (2001). doi:10.1016/S0007-8506(07)62107-6

    Article  Google Scholar 

  33. Werner, G.: Influence of work material on grinding forces. CIRP Ann. Manuf. Technol. 27(1), 243–248 (1978)

    Google Scholar 

  34. Wiercigroch, M., Budak, E.: Sources of nonlinearities, chatter generation and suppression in metal cutting. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 359(1781), 663–693 (2001). doi:10.1098/rsta.2000.0750

    Article  MATH  Google Scholar 

  35. Wiercigroch, M., Krivtsov, A.M.: Frictional chatter in orthogonal metal cutting. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 359(1781), 713–738 (2001). doi:10.1098/rsta.2000.0752

    Article  MATH  Google Scholar 

  36. Yan, Y., Xu, J.: Suppression of regenerative chatter in a plunge-grinding process by spindle speed. ASME J. Manuf. Sci. Eng. 135(4), 041019 (2013). doi:10.1115/1.4023724

    Article  Google Scholar 

  37. Yan, Y., Xu, J., Wang, W.: Nonlinear chatter with large amplitude in a cylindrical plunge grinding process. Nonlinear Dyn. 69(4), 1781–1793 (2012). doi:10.1007/s11071-012-0385-3

    Article  MathSciNet  Google Scholar 

  38. Yan, Y., Xu, J., Wiercigroch, M.: Chatter in a transverse grinding process. J. Sound Vib. 333(3), 937–953 (2014). doi:10.1016/j.jsv.2013.09.039

    Article  Google Scholar 

  39. Yuan, L., Keskinen, E., Jarvenpaa, V.M.: Stability analysis of roll grinding system with double time delay effects. In: Ulbrich, H., Gunthner, W. (eds.) Proceedings of IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures, vol. 130, pp. 375–387. Springer (2005)

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China under Grant Nos. 11572224 and 11502048 and Fundamental Research Funds for the Central Universities under Grant No. ZYGX2015KYQD033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Appendices

Appendix 1: Coefficient of the discrete model

In Fig. 1, the workpiece is spatial–temporal continuum. Thus, kinetic energy of the grinding system is

$$\begin{aligned}&T=\int _{0}^{L}{\frac{1}{2}\rho \pi r_\text {w}^2\left( \left( \frac{\text {d}X_\text {w}(t,S)}{\text {d}t}\right) ^2 +\left( \frac{\text {d}Y_\text {w}(t,S)}{\text {d}t}\right) ^2\right) \text {d}S}\nonumber \\&\quad +\,\frac{1}{2}\rho \pi (r_p^2-r_\text {w}^2)\left( \left( \frac{\text {d}X_\text {w}(t,P)}{\text {d}t}\right) ^2 +\left( \frac{\text {d}Y_\text {w}(t,P)}{\text {d}t}\right) ^2\right) W\nonumber \\&\quad +\,\int _{0}^L{\frac{1}{4}\rho \pi r_\text {w}^4 \left( \frac{\text {d}\phi _\text {w}(t,S)}{\text {d}t}\right) ^2\text {d}S}\nonumber \\&\quad +\,\frac{1}{4}\rho \pi \left( r_p^4-r_\text {w}^4\right) \left( \frac{\text {d}\phi _\text {w}(t,P)}{\text {d}t}\right) ^2 W\nonumber \\&\quad +\,\frac{1}{2}m_\text {g}\left( \frac{\text {d}X_\text {g}(t)}{\text {d}t}\right) ^2. \end{aligned}$$
(41)

In Eq. (41), the first and the second terms are translational kinetic energy of the workpiece and the disc, while the third and the forth terms represent rotational kinetic energy of the workpiece and the disc, respectively. The last term is the translational kinetic energy of the wheel. In consideration of linear elasticity of the workpiece, potential energy of the grinding is given by

$$\begin{aligned} V= & {} \frac{1}{2}\int _0^L\bigg (G I_o \left( \frac{\text {d}^2\phi _\text {w}(t,S)}{\text {d}S^2}\right) ^2+E I_x\left( \frac{\text {d}^2X_\text {w}(t,S)}{\text {d}S^2}\right) ^2\nonumber \\&+\,E I_y\left( \frac{\text {d}^2Y_\text {w}(t,S)}{\text {d}S^2}\right) ^2\bigg )\text {d}S +\frac{1}{2}k_\text {g}\left( \frac{\text {d}X_\text {g}(t)}{\text {d}t}\right) ^2,\nonumber \\ \end{aligned}$$
(42)

where G and E are the shear and Young’s modulus of the workpiece material and \(I_o=\pi r_\text {w}^4/2\), \(I_x=\pi r_\text {w}^4/4\) and \(I_y=\pi r_\text {w}^4/4\) are the area moment of inertia of cross section of the workpiece. Given inherent material damping and interfacial damping of the grinding, the dissipation function is obtained as [14]

$$\begin{aligned} D= & {} \frac{1}{2}\left( c_\text {w}\left( \frac{\text {d}X_\text {p}}{\text {d}t}\right) ^2 +c_\text {w}\left( \frac{\text {d}Y_\text {p}}{\text {d}t}\right) ^2\right. \nonumber \\&\left. +\,c_\text {t}\left( \frac{\text {d}\phi _\text {p}}{\text {d}t}\right) ^2 +c_\text {g}\left( \frac{\text {d}X_\text {g}}{\text {d}t}\right) ^2\right) , \end{aligned}$$
(43)

where \(c_\text {w}\) and \(c_\text {t}\) are the equivalent viscous damping coefficients with respect to the bending and torsional motion of the workpiece and \(c_\text {g}\) is the damping coefficient of the wheel.

To discretize the dynamic model of the grinding, the bending displacement field of the workpiece in the x direction can be defined as

$$\begin{aligned}&X_\text {w}(t,S)\nonumber \\&\quad ={\left\{ \begin{array}{ll} a_{x0}(t)+a_{x1}(t)S+a_{x2}(t)S^2+a_{x3}(t)S^3, &{} \text {if }0\le S \le P,\\ b_{x0}(t)+b_{x1}(t)S+b_{x2}(t)S^2+b_{x3}(t)S^3, &{} \text {if }P\le S \le L, \end{array}\right. }\nonumber \\ \end{aligned}$$
(44)

where \(a_{xi}\) and \(b_{xi}\) (\(i=0,1,2,3\)) are functions of time. Corresponding to the model presented in Fig. 1, the boundary conditions with respect to \(X_\text {w}(t,S)\) are

$$\begin{aligned} {\left\{ \begin{array}{ll} X_\text {w}(t,0)=0,\\ \frac{\text {d}X_\text {w}(t,0)}{\text {d}S}=0,\\ X_\text {w}(t,S)\mid _{S\rightarrow P^-}=X_p(t),\\ X_\text {w}(t,S)\mid _{S\rightarrow P^+}=X_p(t),\\ \frac{\text {d}X_\text {w}(t,S)}{\text {d}S}\mid _{S\rightarrow P^-}=\frac{\text {d}X_\text {w}(t,S)}{\text {d}S}\mid _{S\rightarrow P^+},\\ \frac{\text {d}^2X_\text {w}(t,S)}{\text {d}S^2}\mid _{S\rightarrow P^-}=\frac{\text {d}^2X_\text {w}(t,S)}{\text {d}S^2}\mid _{S\rightarrow P^+},\\ X_\text {w}(t,L)=0,\\ \frac{\text {d}^2X_\text {w}(t,0)}{\text {d}S^2}=0, \end{array}\right. } \end{aligned}$$
(45)

where \(X_\text {p}(t)=X_\text {w}(t,P)\) represents the horizontal displacement of the disc. Considering Eq. (44), solving Eq. (45) yields

$$\begin{aligned}&X_\text {w}(t,S)\nonumber \\&\quad ={\left\{ \begin{array}{ll} \frac{3L(2L-P)PS^2+(P^2-2LP-2L^2)S^3}{P^3(4L-P)(L-P)}X_\text {p}(t),&{}\text {if }0\le S \le P,\\ \frac{-2L^3P+6L^3S+3L(P-3L)S^2+(3L-P)S^3}{(L-P)^2P(4L-P)}X_\text {p}(t),&{}\text {if }P\le S \le L. \end{array}\right. }\nonumber \\ \end{aligned}$$
(46)

Symmetrically, the vertical bending deformation of the workpiece is given by

$$\begin{aligned}&Y_\text {w}(t,S)\nonumber \\&\quad ={\left\{ \begin{array}{ll} \frac{3L(2L-P)PS^2+(P^2-2LP-2L^2)S^3}{P^3(4L-P)(L-P)}Y_\text {p}(t),&{}\text {if }0\le S \le P,\\ \frac{-2L^3P+6L^3S+3L(P-3L)S^2+(3L-P)S^3}{(L-P)^2P(4L-P)}Y_\text {p}(t),&{}\text {if }P\le S \le L, \end{array}\right. }\nonumber \\ \end{aligned}$$
(47)

where \(Y_\text {p}(t)=Y_\text {w}(t,P)\). Similarly, the torsional displacement field \(\phi (t,S)\) of the workpiece can be defined as

$$\begin{aligned} \phi _\text {w}(t,S)= {\left\{ \begin{array}{ll} a_{\phi 0}(t)+a_{\phi 1}(t)S,&{}\text {if }0\le S \le P,\\ b_{\phi 0}(t)+b_{\phi 1}(t)S,&{}\text {if }P\le S \le L, \end{array}\right. } \end{aligned}$$
(48)

where coefficients \(a_{\phi i}\) and \(b_{\phi i}\) (\(i=0,1\)) are functions of time. Its boundary conditions are

$$\begin{aligned} {\left\{ \begin{array}{ll} \phi (t,0)=\varOmega _\text {w}t,\\ \phi (t,S)\mid _{S\rightarrow P^-}=\phi _\text {p}(t),\\ \phi (t,S)\mid _{S\rightarrow P^+}=\phi _\text {p}(t),\\ \frac{\text {d}\phi (t,S)}{\text {d}S}\mid _{S\rightarrow P^-}=\frac{\text {d}\phi (t,S)}{\text {d}S}\mid _{S\rightarrow P^+}. \end{array}\right. } \end{aligned}$$
(49)

Solving Eqs. (48) and (49) yields

$$\begin{aligned} \phi _\text {w}(t,S)=t\varOmega _\text {w}+\frac{S(\phi _\text {p}(t)-\varOmega _\text {w}t)}{P}, (0\le S \le L).\nonumber \\ \end{aligned}$$
(50)

Next, to obtain the governing equation of the grinding process, one can use Lagrange’s equations

$$\begin{aligned} \frac{\text {d}}{\text {d}t}\frac{\partial L}{\partial (\text {d}q_i/\text {d}t)}-\frac{\partial L}{\partial q_i}+\frac{\partial D}{\partial (\text {d}q_i/\text {d}t)}=Q_{q_i}, \end{aligned}$$
(51)

where the Lagrange L is \(L=T-V\), \(q_i\) represents generalised coordinates \(X_\text {g}(t)\), \(X_\text {p}(t)\), \(Y_\text {p}(t)\) and \(\phi _\text {p}(t)\) and \(Q_{q_i}\) stands for generalised force with respect to \(q_i\), respectively. Then, substituting Eqs. (41), (42), (43), (46), (47) and (50) into Eq. (51) yields Eq. (2), where the coefficients are given as follows:

$$\begin{aligned}&k_\text {w}=\frac{12 E I_x L^3}{(L-P)^2(4L-P)P^3},\nonumber \\&k_\text {t}=\frac{G I_o L}{P^2},\nonumber \\&m_\text {w}=\frac{70\pi \rho P^2 W (R_\text {p}^2-R_\text {w}^2)(4L^2-5LP+P^2)^2}{35(L-P)^2P^2(4L-P)^2}\nonumber \\&\quad +\,\frac{\pi \rho L^3 R_\text {w}^2 (24L^4\!-\!24L^3P\!-\!4L^2P^2\!+\!8LP^3\!-\!P^4)}{35(L\!-\!P)^2P^2(4L\!-\!P)^2}, \nonumber \\&J_\text {t}=\frac{\pi \rho \left( 6P^2WR_\text {p}^4+(L^3-6P^2W)R_\text {w}^4\right) }{6P^2}. \end{aligned}$$
(52)

Appendix 2: Coefficient matrices

In Eq. (33), the matrices \(\mathbf {M}\), \(\mathbf {C}\), \(\mathbf {K}\) and \(\mathbf {A}\) are

$$\begin{aligned} \mathbf {M}&=\begin{pmatrix} 1&{} 0&{} 0&{} 0\\ 0&{} 1&{} 0&{} 0\\ 0&{} 0&{} 1&{} 0\\ 0&{} 0&{} 0&{} 1 \end{pmatrix},\quad \mathbf {C}=\begin{pmatrix} \xi _\text {g}&{} 0&{} 0&{} 0\\ 0&{} \xi _\text {w}&{} 0&{} 0\\ 0&{} 0&{} \xi _\text {w}&{} 0\\ 0&{} 0&{} 0&{} \xi _\text {t} \end{pmatrix}, \nonumber \\ \mathbf {K}&=\begin{pmatrix} \kappa _\text {g}&{} 0&{} 0&{} 0\\ 0&{} \kappa _\text {w}&{} 0&{} 0\\ 0&{} 0&{} \kappa _\text {w}&{} 0\\ 0&{} 0&{} 0&{} \kappa _\text {t} \end{pmatrix}, \quad \mathbf {A}=\left( a_{ij}\right) _{4\times 5}, \end{aligned}$$
(53)

where

$$\begin{aligned} a_{11}= & {} d_\text {g0}^\mu k_\mu \left( \frac{\tau _\text {g0}}{\tau _\text {w0}}\right) ^{2\mu -1} \left( -\sin (\gamma _0)+k_\text {f0}\cos (\gamma _0)\right) ,\nonumber \\ a_{12}= & {} d_\text {g0}^\mu k_\mu \left( \frac{\tau _\text {g0}}{\tau _\text {w0}}\right) ^{2\mu -1}\mu \left( \cos (\gamma _0)+k_\text {f0}\sin (\gamma _0) \right) ,\nonumber \\ a_{13}= & {} d_\text {g0}^\mu k_\mu \left( \frac{\tau _\text {g0}}{\tau _\text {w0}}\right) ^{2\mu -1}\sin (\gamma _0),\nonumber \\ a_{14}= & {} d_\text {g0}^\mu k_\mu \left( \frac{\tau _\text {g0}}{\tau _\text {w0}}\right) ^{2\mu -1}\frac{\tau _\text {w0}}{2\pi }(2\mu -1) \left( \cos (\gamma _0)\right. \nonumber \\&\left. +\,k_\text {f0}\sin (\gamma _0)\right) ,\nonumber \\ a_{15}= & {} d_\text {g0}^\mu k_\mu \left( \frac{\tau _\text {g0}}{\tau _\text {w0}}\right) ^{2\mu -1}\frac{\tau _\text {w0}+\tau _\text {g0}}{2\pi }(1-2\mu )\left( \cos (\gamma _0)\right. \nonumber \\&\left. +\,k_\text {f0}\sin (\gamma _0) \right) ,\nonumber \\ a_{21}= & {} -\gamma _\text {w}a_{11},\quad a_{22}=-\gamma _\text {w}a_{12},\quad a_{23}=-\gamma _\text {w}a_{13},\nonumber \\ a_{24}= & {} -\gamma _\text {w}a_{14},\quad a_{25}=-\gamma _\text {w}a_{15},\nonumber \\ a_{31}= & {} d_\text {g0}^\mu k_\mu \left( \frac{\tau _\text {g0}}{\tau _\text {w0}}\right) ^{2\mu -1} \gamma _\text {w}\left( \cos (\gamma _0)+\,k_\text {f0}\sin (\gamma _0)\right) ,\nonumber \\ a_{32}= & {} d_\text {g0}^{\mu -1} k_\mu \left( \frac{\tau _\text {g0}}{\tau _\text {w0}}\right) ^{2\mu -1}\nonumber \\&\quad \mu \gamma _\text {w}\left( \sin (\gamma _0)\!-\!k_\text {f0}\cos (\gamma _0) \right) ,\nonumber \\ a_{33}= & {} -d_\text {g0}^\mu k_\mu \left( \frac{\tau _\text {g0}}{\tau _\text {w0}}\right) ^{2\mu -1}\gamma _\text {w}\cos (\gamma _0), \nonumber \\ a_{34}= & {} d_\text {g0}^\mu k_\mu \left( \frac{\tau _\text {g0}}{\tau _\text {w0}}\right) ^{2\mu -1}\gamma _\text {w}\frac{\tau _\text {w0}}{2\pi }(2\mu -1)\left( \sin (\gamma _0)\right. \nonumber \\&\left. -\,k_\text {f0}\cos (\gamma _0)\right) ,\nonumber \\ a_{35}= & {} d_\text {g0}^\mu k_\mu \left( \frac{\tau _\text {g0}}{\tau _\text {w0}}\right) ^{2\mu -1}\nonumber \\&\times \gamma _\text {w}\frac{\tau _\text {w0}+\tau _\text {g0}}{2\pi }(1-2\mu )\left( \sin (\gamma _0)\right. \nonumber \\&\left. -\,k_\text {f0}\cos (\gamma _0)\right) ,\nonumber \\ a_{41}= & {} 0,\quad a_{42}=\mu d_\text {g0}^{\mu -1} k_\text {f0}\kappa _\mu \left( \frac{\tau _\text {g0}}{\tau _\text {w0}}\right) ^{2\mu -1}\gamma _\text {t},\nonumber \\ a_{43}= & {} d_\text {g0}^{\mu }\kappa _\mu \left( \frac{\tau _\text {g0}}{\tau _\text {w0}}\right) ^{2\mu -1}\gamma _\text {t}, \nonumber \\ a_{44}= & {} {a_{43}(2\mu -1)k_\text {f0}\frac{\tau _\text {w0}}{2\pi }},\nonumber \\ a_{45}= & {} {a_{43}(1-2\mu )k_\text {f0}\frac{\tau _\text {w0}+\tau _\text {g0}}{2\pi }}. \end{aligned}$$
(54)

The matrix, \(\mathbf {D}\), introduced in Eq. (34) is

$$\begin{aligned} \mathbf {D}=\begin{pmatrix} d_{11}&{} d_{12}&{} d_{13}&{} 0\\ d_{21}&{} d_{22}&{} d_{23}&{} 0\\ 0&{} 0&{} 0&{} 0\\ 0&{} 0&{} 0&{} 0\\ 0&{} 0&{} 0&{} 0 \end{pmatrix} \end{aligned}$$
(55)

where

$$\begin{aligned}&d_{11}=\frac{-y_\text {p0}}{(1-\nu +x_\text {g0}-x_\text {p0})^2+y_\text {p0}^2}, \quad d_{12}=-d_{11},\\&d_{13}=\frac{1-\nu +x_\text {g0}-x_\text {p0}}{(1-\nu +x_\text {g0} -x_\text {p0})^2+y_\text {p0}^2},\\&d_{21}=\frac{-(1\!-\!\nu \!+\!x_\text {g0}\!-\!x_\text {p0})^3\!-\!(-\nu \!+\!x_\text {g0} \!-\!x_\text {p0})y_\text {p0}^2}{\left( (1-\nu +x_\text {g0} -x_\text {p0})^2+y_\text {p0}^2 \right) ^{\frac{3}{2}}},\\&d_{22}=-d_{21}, \end{aligned}$$
$$\begin{aligned} d_{23}=-y_\text {p0}\frac{(\nu -1)(\nu -2)+(x_\text {p0}-x_\text {g0})^2+y_\text {p0}^2+(2\nu -3)(x_\text {p0} -x_\text {g0})}{\left( (1-\nu +x_\text {g0} -x_\text {p0})^2+y_\text {p0}^2 \right) ^{\frac{3}{2}}}.\nonumber \\ \end{aligned}$$
(56)

\(\mathbf {D_\text {w}}\) is

$$\begin{aligned} D_\text {w}=\begin{pmatrix} 0&{} 0&{} 0&{} 0\\ w_{21}&{} w_{22}&{} w_{23}&{} 0\\ 0&{} 0&{} 0&{} 0\\ 0&{} 0&{} 0&{} 0\\ 0&{} 0&{} 0&{} 0 \end{pmatrix}, \end{aligned}$$
(57)

where

$$\begin{aligned} w_{21}= & {} \frac{(1-\nu +x_\text {g0}-x_\text {p0})^3+(x_\text {g0}-x_\text {p0})y_\text {p0}^2}{\left( (1-\nu +x_\text {g0} -x_\text {p0})^2+y_\text {p0}^2\right) ^\frac{3}{2}},\\ w_{22}= & {} -w_{21}, \end{aligned}$$
$$\begin{aligned} w_{23}=\frac{(1-\nu +x_\text {g0}-x_\text {p0})(2-2\nu +x_\text {g0}-x_\text {p0})y_\text {p0}+y_\text {p0}^3}{\left( (1-\nu +x_\text {g0} -x_\text {p0})^2+y_\text {p0}^2\right) ^\frac{3}{2}}.\nonumber \\ \end{aligned}$$
(58)

\(\mathbf {D_\text {g}}\) is

$$\begin{aligned} \mathbf {D_\text {g}}=\begin{pmatrix} 0&{} 0&{} 0&{} 0\\ g_{21}&{} g_{22}&{} g_{23}&{} 0\\ 0&{} 0&{} 0&{} 0\\ 0&{} 0&{} 0&{} 0\\ 0&{} 0&{} 0&{} 0 \end{pmatrix}, \end{aligned}$$
(59)

where

$$\begin{aligned} \begin{aligned} g_{21}&=g w_{21},\quad g_{22}=g w_{22}, \quad g_{23}=g w_{23}. \end{aligned} \end{aligned}$$
(60)

\(\mathbf {D_\text {v}}\) is

$$\begin{aligned} \mathbf {D_\text {v}}=\begin{pmatrix} 0&{} 0&{} 0&{} 0\\ 0&{} 0&{} 0&{} 0\\ v_{31}&{} v_{32}&{} v_{33}&{} v_{34}\\ 0&{} 0&{} 0&{} v_{44}\\ v_{51}&{} v_{52}&{} v_{53}&{} 0\\ \end{pmatrix}, \end{aligned}$$
(61)

where

$$\begin{aligned} v_{31}= & {} \frac{(k_\text {s}-k_\text {d}) \exp \left( \frac{2\pi }{v_\text {s}}\left( \frac{r_\text {p}}{\tau _\text {w0}}-\frac{r_\text {g}}{\tau _\text {g0}}\right) \right) y_\text {p0}}{ v_\text {s}\sqrt{(1-\nu +x_\text {g0}-x_\text {p0})^2+y_\text {p0}^2}},\\ v_{32}= & {} -v_{31}, \end{aligned}$$
$$\begin{aligned} v_{33}= & {} \frac{(k_\text {s}-k_\text {d}) \exp \left( \frac{2\pi }{v_\text {s}}\left( \frac{r_\text {p}}{\tau _\text {w0}}-\frac{r_\text {g}}{\tau _\text {g0}}\right) \right) (1-\nu +x_\text {g0}-x_\text {p0})}{ v_\text {s}\sqrt{(1-\nu +x_\text {g0}-x_\text {p0})^2+y_\text {p0}^2}}, \end{aligned}$$
$$\begin{aligned} v_{34}= & {} \frac{(k_\text {s}-k_\text {d}) \exp \left( \frac{2\pi }{v_\text {s}}\left( \frac{r_\text {p}}{\tau _\text {w0}}-\frac{r_\text {g}}{\tau _\text {g0}}\right) \right) r_\text {p}}{v_\text {s}},\quad v_{44}=1\nonumber \\ v_{51}= & {} -\frac{y_\text {p0}}{(1-\nu +x_\text {g0}-x_\text {p0})^2+y_\text {p0}^2},\quad v_{52}=-v_{51},\nonumber \\ v_{53}= & {} \frac{1-\nu +x_\text {g0}-x_\text {p0}}{(1-\nu +x_\text {g0}-x_\text {p0})^2+y_\text {p0}^2}. \end{aligned}$$
(62)

Appendix 3: Continuation

The continuation scheme is illustrated in Fig. 17. As shown, to start the continuation algorithm, two adjacent solutions (the ith and the \(i+1\)st solutions) are required. Then, the initial guess for the third one (the \(i+2\)nd) is given by using a relaxation parameter r; thereafter, the guess is corrected by Newton–Raphson iteration. If the iteration does not converge, the relaxation parameter is decreased for a new prediction of the third solution. On the contrary, the convergent solution is accepted so long as it is located in the predefined region. Lastly, the algorithm goes to next loop (\(i=i+1\)) if \(i<\)max_steps, or the loop is ended when sufficient solutions are obtained.

Fig. 17
figure 17

Continuation scheme for eigenvalue calculation

Fig. 18
figure 18

Extended stability diagram for Fig. 7a (\(p=0.1\) and \(\nu =0.006\)). More specifically, regenerative and frictional stabilities for \(v_\text {f0}<0\) (\(\omega _\text {g}r_\text {g}<\omega _\text {g}r_\text {w}\)) are investigated. In addition, Arrows V (\(\tau _\text {w0}=14.2\) and \(\kappa _\mu \in [1.1, 2]\)) and VI (\(\tau _\text {w0}=15\) and \(\kappa _\mu \in [1.1, 2]\)) are marked for further analysis

Appendix 4: Grinding dynamics for \(v_\text {f0}<0\)

Sections 3 and 4 discuss the grinding stability and the grinding dynamics for positive frictional velocity (\(v_\text {f0}>0\)). Besides, due to the non-smoothness in the frictional coefficient given in Eq. (14) and Fig. 6, one would be curious about the grinding dynamics for negative frictional velocity (\(v_\text {f0}<0\)). In that case, the frictional coefficient in Eqs. 19 and 32 is transformed into

$$\begin{aligned} k_\text {f0}=-\left( k_\text {d}+(k_\text {s}-k_\text {d})\exp \left( \frac{\omega _\text {g}r_\text {g}-\omega _\text {w}r_\text {p}}{v_s}\right) \right) , \end{aligned}$$
(63)

and

$$\begin{aligned} k_\text {f1}= & {} (k_\text {s}-k_\text {d})\exp \left( -\frac{2\pi r_\text {p}}{v_\text {s}\tau _\text {w0}}+\frac{2\pi r_\text {g}}{v_\text {s}\tau _\text {g0}}\right) \nonumber \\&\times \left( \frac{y_\text {p0}\frac{\text {d}x_\text {g}}{\text {d}\tau }-y_\text {p0}\frac{\text {d}x_\text {p}}{\text {d}\tau } +(1-\nu +x_\text {g0}-x_\text {p0})\frac{\text {d} y_\text {p}}{\text {d}\tau }}{v_\text {s}\sqrt{(1-\nu +x_\text {g0}-x_\text {p0})^2+y_\text {p0}^2}}\right. \nonumber \\&\left. +\frac{r_\text {p}\frac{\text {d}\theta _\text {p}}{\text {d}\tau }}{v_\text {s}}\right) . \end{aligned}$$
(64)

Before the analysis, it should be remarked that this is only a mathematical problem, because a high rotary speed for the wheel (\(\omega _\text {g}r_\text {g}>\omega _\text {w}r_\text {p}\)) is always required for cutting the workpiece. However, this discussion is still valuable for us to understand the relationship between our model and a real grinding process in application.

As an example, Fig. 18 extends Fig. 7a to \(\tau _\text {w0}=10\). It is seen that the stability boundaries are discontinuous at \(\tau _\text {w0}=20\), where \(k_\text {f0}\) is non-smooth for zero frictional velocity. Moreover, Fig. 18 illustrates another difference between the regenerative and the frictional instabilities: the regenerative boundaries move downwards uniformly for the decrease of \(\tau _\text {w0}\), but the frictional boundaries reach the lowest point near \(\tau _\text {w0}=20\), where the Stribeck effect is more significant than any other places. Next, to represent the grinding dynamics for \(v_\text {f0}<0\), Arrows V (\(\tau _\text {w0}=14.2\) and \(\kappa _\mu \in [1.1, 2]\)) and VI (\(\tau _\text {w0}=15\) and \(\kappa _\mu \in [1.1, 2]\)) are marked for further bifurcation analysis.

For \(\kappa _\mu \) increasing along Arrow V, a regenerative boundary is crossed before it reaches a frictional one. Therefore, the corresponding bifurcation pattern in Fig. 19 is similar to that along Arrow I, which is depicted in Fig. 12. However, the bifurcation diagram for \(\min (v_\text {f})\) presents some new features when the frictional chatter is incurred. Here, as shown in Fig. 19f, the frictional velocity of the chatter motion keeps negative and the corresponding \(\min (v_\text {f})\) recorded in Fig. 19b cluster round two locations. One indicates the smallest velocities and located at the bottom of the bifurcation diagram, and another is due to the stick motion and sited at the top of the bifurcation diagram.

Fig. 19
figure 19

Bifurcation diagrams with respect to Arrow V marked in Fig. 18. In addition, time series or phase portraits for \(\kappa _\nu =1.4\) and 1.8 are plotted as well

The bifurcation pattern along Arrow VI is plotted in Fig. 20. As seen, this is similar to those in Figs. 13 and 14. As the increase of \(\kappa _\mu \), the frictional chatter is firstly promoted before the regenerative chatter. Still, the frictional chatter is of negative frictional velocity, and the distribution of \(min(v_\text {f})\) is split by the frictional chatter. In addition, the periodic frictional vibration plotted in Fig. 20e is twisted, so that two maximums of the grinding depth (\(\max (d_\text {g})\)) are recorded.

Fig. 20
figure 20

Bifurcation diagrams with respect to Arrow VI marked in Fig. 18. In addition, time series or phase portraits for \(\kappa _\nu =1.3\), 1.5 and 1.8 are plotted as well

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Xu, J. & Wiercigroch, M. Regenerative and frictional chatter in plunge grinding. Nonlinear Dyn 86, 283–307 (2016). https://doi.org/10.1007/s11071-016-2889-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2889-8

Keywords

Navigation