Skip to main content
Log in

Chatter detection and suppression in machining processes: a comprehensive analysis

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Chatter is a phenomenon that occurs during machining operations, causing vibrations that can negatively impact the quality of the machined surface. Detecting and avoiding chatter is crucial for efficient machining processes. Various strategies have been developed to address this issue, including offline chatter prediction, online chatter detection and suppression, and the use of artificial intelligence (AI) solutions in line with Industry 4.0 trends. However, the topic of chatter detection is partially discussed as a section in some review publications, and it does not appear as a kernel focus. With the addition of the latest development in chatter detection and suppression, conducting a rigorous review of chatter is critical. This work entails tracing analytical chatter detection techniques (stability lobe diagram, Nyquist plot, finite element analysis), experimental chatter detection techniques by using various data acquisition signals and from time–frequency signal processing methods (fast Fourier transform, discrete wavelet transform, hilbert-huang transform, short-time Fourier transform, etc.), as well as the most recent AI techniques (artificial neural network, support vector machine, hidden markov model, fuzzy logic, k-nearest neighbor, etc.). A thorough investigation was conducted to determine the limitations of these various techniques and to provide potential solutions for detecting chattering in machining processes. Moreover, The approaches for suppressing chatter (active + passive) during the machining process will also be thoroughly reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All data generated or analysed during this study are included in article.

Code availability

All data generated or analysed during this study are included in article.

Abbreviations

AI:

Artificial intelligence

SLD:

Stability lobe diagram

FEA:

Finite element analysis

FFT:

Fast Fourier transform

DWT:

Discrete wavelet transform

HHT:

Hilbert-Huang transform

STFT:

Short-time Fourier transform

ANN:

Artificial neural network

SVM:

Support vector machine

HMM:

Hidden Markov model

DOC:

Depth of cut

MRR:

Material removal rate

OFRL:

Open-loop frequency response locus

SDF:

Single degree of freedom

TDS:

Time-domain simulation

OTF:

Oriented transfer function

CNC:

Computer numerical control

SFMC:

Servo feed motor current

AC:

Alternating current

DC:

Direct current

TD:

Time-domain

FD:

Frequency-domain

TFD:

Time-frequency domain

WT:

Wavelet transform

PSD:

Power spectrum density

CNN:

Convolutional neural networks

KNN:

K-nearest neighbors

SOM:

Self-organizing map

TMD:

Tuned mass damper

DVA:

Dynamic vibration absorber

SSV:

Spindle speed variation

PD:

Proportional-derivative

CPU:

Central processing unit

GPU:

Graphics processing unit

TPU:

Tensor processing unit

References

  1. Abele, E., Altintas, Y., Brecher, C.: Machine tool spindle units. CIRP Ann. - Manuf. Technol. 59(2), 781–802 (2010). https://doi.org/10.1016/j.cirp.2010.05.002

    Article  Google Scholar 

  2. Ahmadi, K., Ismail, F.: Experimental investigation of process damping nonlinearity in machining chatter. Int. J. Mach. Tools Manuf 50(11), 1006–1014 (2010). https://doi.org/10.1016/j.ijmachtools.2010.07.002

    Article  Google Scholar 

  3. Ahmadi, K., Ismail, F.: Analytical stability lobes including nonlinear process damping effect on machining chatter. Int. J. Mach. Tools Manuf 51(4), 296–308 (2011). https://doi.org/10.1016/j.ijmachtools.2010.12.008

    Article  Google Scholar 

  4. Albertelli, P., Braghieri, L., Torta, M., Monno, M.: Development of a generalized chatter detection methodology for variable speed machining. Mech. Syst. Signal Process. 123, 26–42 (2019). https://doi.org/10.1016/j.ymssp.2019.01.002

    Article  Google Scholar 

  5. Altintas, Y., Eynian, M., Onozuka, H.: Identification of dynamic cutting force coefficients and chatter stability with process damping. CIRP Ann. - Manuf. Technol. 57(1), 371–374 (2008). https://doi.org/10.1016/j.cirp.2008.03.048

    Article  Google Scholar 

  6. Altintas, Y., Stepan, G., Budak, E., Schmitz, T., Kilic, Z.M.: Chatter stability of machining operations. J. Manuf. Sci. Eng. (2020). https://doi.org/10.1115/1.4047391

    Article  Google Scholar 

  7. Altintas, Y., Weck, M.: Chatter stability of metal cutting and grinding. CIRP Ann. - Manuf. Technol. 53(2), 619–642 (2004). https://doi.org/10.1016/S0007-8506(07)60032-8

    Article  Google Scholar 

  8. Arriaza, O.V., Tumurkhuyagc, Z., Kim, D.W.: Chatter identification using multiple sensors and multi-layer neural networks. Procedia Manuf. 17, 150–157 (2018). https://doi.org/10.1016/j.promfg.2018.10.030

    Article  Google Scholar 

  9. Aslan, D., Altintas, Y.: On-line chatter detection in milling using drive motor current commands extracted from CNC. Int. J. Mach. Tools Manuf 132, 64–80 (2018). https://doi.org/10.1016/j.ijmachtools.2018.04.007

    Article  Google Scholar 

  10. Axinte, D.A., Gindy, N., Fox, K., Unanue, I.: Process monitoring to assist the workpiece surface quality in machining. Int. J. Mach. Tools Manuf 44(10), 1091–1108 (2004). https://doi.org/10.1016/j.ijmachtools.2004.02.020

    Article  Google Scholar 

  11. Bach, P.: "Vibrace při obrábění. Mach. Tool. 3, 1–5 (2012)

    Google Scholar 

  12. Baker, J.R., Rouch, K.E.: Use of finite element structural models in analyzing machine tool chatter. Finite Elem. Anal. Des. 38(11), 1029–1046 (2002). https://doi.org/10.1016/S0168-874X(02)00050-1

    Article  Google Scholar 

  13. Behrouz, H., Baseri, H., Nourmohammadi, H.: Chatter Suppression in turning by applying a tooling mechanism with the ability to change the tool angles. Results Experimental tests were conducted for the evaluation of the proposed chatter suppression system. vol. 55, no. 4, pp. 93–96, 2023, https://doi.org/10.22060/mej.2023.5172.7490.

  14. Benardos, P.G., Mosialos, S., Vosniakos, G.C.: Prediction of workpiece elastic deflections under cutting forces in turning. Robot. Comput. Integr. Manuf. 22(5–6), 505–514 (2006). https://doi.org/10.1016/j.rcim.2005.12.009

    Article  Google Scholar 

  15. Budak, E., Tunc, L.T.: Identification and modeling of process damping in turning and milling using a new approach. CIRP Ann. - Manuf. Technol. 59(1), 403–408 (2010). https://doi.org/10.1016/j.cirp.2010.03.078

    Article  Google Scholar 

  16. Caliskan, H., Kilic, Z.M., Altintas, Y.: On-line energy-based milling chatter detection. J. Manuf. Sci. Eng. Trans. ASME 140(11), 1–12 (2018). https://doi.org/10.1115/1.4040617

    Article  Google Scholar 

  17. Cao, H., Yue, Y., Chen, X., Zhang, X.: Chatter detection in milling process based on synchrosqueezing transform of sound signals. Int. J. Adv. Manuf. Technol. 89(9–12), 2747–2755 (2017). https://doi.org/10.1007/s00170-016-9660-7

    Article  Google Scholar 

  18. Cao, L., Zhang, X., Huang, T., Zhang, X., Ding, H.: An adaptive chatter signal enhancement approach for early fault diagnosis in machining process. Procedia CIRP 82(July), 308–313 (2019). https://doi.org/10.1016/j.procir.2019.03.273

    Article  Google Scholar 

  19. Cao, H., Zhou, K., Chen, X., Zhang, X.: Early chatter detection in end milling based on multi-feature fusion and 3σ criterion. Int. J. Adv. Manuf. Technol. 92(9–12), 4387–4397 (2017). https://doi.org/10.1007/s00170-017-0476-x

    Article  Google Scholar 

  20. Cardi, A.A., Firpi, H.A., Bement, M.T., Liang, S.Y.: Workpiece dynamic analysis and prediction during chatter of turning process. Mech. Syst. Signal Process. 22(6), 1481–1494 (2008). https://doi.org/10.1016/j.ymssp.2007.11.026

    Article  Google Scholar 

  21. Chandiramani, N.K., Pothala, T.: Dynamics of 2-dof regenerative chatter during turning. J. Sound Vib. 290(1–2), 448–464 (2006). https://doi.org/10.1016/j.jsv.2005.04.012

    Article  Google Scholar 

  22. Chen, Y., Li, H., Jing, X., Hou, L., Bu, X.: Intelligent chatter detection using image features and support vector machine. Int. J. Adv. Manuf. Technol. 102(5–8), 1433–1442 (2019). https://doi.org/10.1007/s00170-018-3190-4

    Article  Google Scholar 

  23. Chen, J.F., Lo, S.K., Do, Q.H.: An approach to the classification of cutting vibration on machine tools. Inf (2016). https://doi.org/10.3390/info7010007

    Article  Google Scholar 

  24. Chen, C.K., Tsao, Y.M.: A stability analysis of regenerative chatter in turning process without using tailstock. Int. J. Adv. Manuf. Technol. 29(7–8), 648–654 (2006). https://doi.org/10.1007/s00170-005-2573-5

    Article  Google Scholar 

  25. Chen, C.K., Tsao, Y.M.: A stability analysis of turning a tailstock supported flexible work-piece. Int. J. Mach. Tools Manuf 46(1), 18–25 (2006). https://doi.org/10.1016/j.ijmachtools.2005.04.002

    Article  Google Scholar 

  26. Chen, D., Zhang, X., Zhao, H., Ding, H.: Development of a novel online chatter monitoring system for flexible milling process. Mech. Syst. Signal Process. 159, 107799 (2021). https://doi.org/10.1016/j.ymssp.2021.107799

    Article  Google Scholar 

  27. Chiou, Y.S., Chung, E.S., Liang, S.Y.: Analysis of tool wear effect on chatter stability in turning. Int. J. Mech. Sci. 37(4), 391–404 (1995). https://doi.org/10.1016/0020-7403(94)00070-Z

    Article  Google Scholar 

  28. Clancy, B.E., Shin, Y.C.: A comprehensive chatter prediction model for face turning operation including tool wear effect. Int. J. Mach. Tools Manuf 42(9), 1035–1044 (2002). https://doi.org/10.1016/S0890-6955(02)00036-6

    Article  Google Scholar 

  29. Comak, A., Budak, E.: Modeling dynamics and stability of variable pitch and helix milling tools for development of a design method to maximize chatter stability. Precis. Eng. 47, 459–468 (2017). https://doi.org/10.1016/j.precisioneng.2016.09.021

    Article  Google Scholar 

  30. Das, M.K., Tobias, S.A.: The relation between the static and the dynamic cutting of metals. Int. J. Mach. Tool Des. Res. 7(2), 63–89 (1967). https://doi.org/10.1016/0020-7357(67)90026-1

    Article  Google Scholar 

  31. Delio, T., Tlusty, J., Smith, S.: Use of audio signals for chatter detection and control. J. Manuf. Sci. Eng. Trans. ASME 114(2), 146–157 (1992). https://doi.org/10.1115/1.2899767

    Article  Google Scholar 

  32. Dombovari, Z., Barton, D.A.W., Eddie Wilson, R., Stepan, G.: On the global dynamics of chatter in the orthogonal cuttingmodel. Int. J. Non. Linear. Mech. 46(1), 330–338 (2011). https://doi.org/10.1016/j.ijnonlinmec.2010.09.016

    Article  Google Scholar 

  33. Dong, X.W., Li, Z.A., Bian, L., Wang, M., Jin, Z.B., Da Li, Q.: Study on chatter suppression in ultrasonic-assisted grinding of thin-walled workpiece of SiCp/Al composites. Adv. Mech. Eng. 15(6), 1–9 (2023). https://doi.org/10.1177/16878132231177995

    Article  Google Scholar 

  34. Dun, Y., Zhus, L., Yan, B., Wang, S.: A chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clustering. Mech. Syst. Signal Process. 158, 1–23 (2021). https://doi.org/10.1016/j.ymssp.2021.107755

    Article  Google Scholar 

  35. Elbestawi, M.A., Ismail, F., Du, R., Ullagaddi, B.C.: Modelling machining dynamics including damping in the tool- workpiece interface. J. Manuf. Sci. Eng. Trans. ASME 116(4), 435–439 (1994). https://doi.org/10.1115/1.2902125

    Article  Google Scholar 

  36. Elbestawi, T M. A., Du, S. L. R. X.: Int. J. Maeh.; 32(6):781–796 (1992)

  37. Emami, M., Karimipour, A.: Theoretical and experimental study of the chatter vibration in wet and MQL machining conditions in turning process. Precis. Eng. 72(April), 41–58 (2021). https://doi.org/10.1016/j.precisioneng.2021.04.006

    Article  Google Scholar 

  38. Eynian, M., Altintas, Y.: Chatter stability of general turning operations with process damping. J. Manuf. Sci. Eng. 131(4), 0410051–04100510 (2009). https://doi.org/10.1115/1.3159047

    Article  Google Scholar 

  39. Fofana, M.S., Ee, K.C., Jawahir, I.S.: Machining stability in turning operation when cutting with a progressively worn tool insert. Wear 255(7–12), 1395–1403 (2003). https://doi.org/10.1016/S0043-1648(03)00356-9

    Article  Google Scholar 

  40. Frumusanu, G.R., Constantin, I.C., Marinescu, V., Epureanu, A.: Development of a stability intelligent control system for turning. Int. J. Adv. Manuf. Technol. (2013). https://doi.org/10.1007/s00170-012-4074-7

    Article  Google Scholar 

  41. Gao, H.N., Shen, D.H., Yu, L., Zhang, W.C.: Identification of cutting chatter through deep learning and classification. Int. J. Simul. Model. 19(4), 667–677 (2020). https://doi.org/10.2507/IJSIMM19-4-CO16

    Article  Google Scholar 

  42. Gao, J., Song, Q., Liu, Z.: Chatter detection and stability region acquisition in thin-walled workpiece milling based on CMWT. Int. J. Adv. Manuf. Technol. 98(1–4), 699–713 (2018). https://doi.org/10.1007/s00170-018-2306-1

    Article  Google Scholar 

  43. Glaeser, A., et al.: Applications of deep learning for fault detection in industrial cold forging. Int. J. Prod. Res. 59(16), 4826–4835 (2021). https://doi.org/10.1080/00207543.2021.1891318

    Article  Google Scholar 

  44. González-Brambila, O., Rubio, E., Jáuregui, J.C., Herrera-Ruiz, G.: Chattering detection in cylindrical grinding processes using the wavelet transform. Int. J. Mach. Tools Manuf 46(15), 1934–1938 (2006). https://doi.org/10.1016/j.ijmachtools.2006.01.021

    Article  Google Scholar 

  45. Gradišek, J., Baus, A., Govekar, E., Klocke, F., Grabec, I.: Automatic chatter detection in grinding. Int. J. Mach. Tools Manuf 43(14), 1397–1403 (2003). https://doi.org/10.1016/S0890-6955(03)00184-6

    Article  Google Scholar 

  46. Gök, F., Orak, S., Sofuoğlu, M.A.: The effect of cutting tool material on chatter vibrations and statistical optimization in turning operations. Soft. Comput. 24(22), 17319–17331 (2020). https://doi.org/10.1007/s00500-020-05022-3

    Article  Google Scholar 

  47. Habib, G., Kerschen, G., Stepan, G.: Chatter mitigation using the nonlinear tuned vibration absorber. Int. J. Non. Linear. Mech. 91(February), 103–112 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.02.014

    Article  Google Scholar 

  48. Heyns, P.S.: Tool condition monitoring using vibration measurements: a review. Insight Non-Destructive Test. Cond. Monit. 49(8), 447–450 (2007). https://doi.org/10.1784/insi.2007.49.8.447

    Article  Google Scholar 

  49. Ji, Y., et al.: EEMD-based online milling chatter detection by fractal dimension and power spectral entropy. Int. J. Adv. Manuf. Technol. 92(1–4), 1185–1200 (2017). https://doi.org/10.1007/s00170-017-0183-7

    Article  Google Scholar 

  50. Jin, X., Poudel, A.: 712. Experimental study on high frequency chatter attenuation in 2-D vibration assisted micro milling process CM Conventional machining VAM Vibration assisted machining, Mass in and directions, Damping coefficient in and directions, Stiffness in and di. J. Vibroeng.; 17(6):1392–8716 (2015)

  51. K. R. Kashyzadeh and M. J. O. Ghorabi, “Study of Chatter Analysis in Turning Tool And Control Methods – A Review,” vol. 2, no. 4, pp. 1–5, 2012.

  52. Karam, S., Teti, R.: Wavelet transform feature extraction for chip form recognition during carbon steel turning. Procedia CIRP 12, 97–102 (2013). https://doi.org/10.1016/j.procir.2013.09.018

    Article  Google Scholar 

  53. Khalifa, O.O., Densibali, A., Faris, W.: Image processing for chatter identification in machining processes. Int. J. Adv. Manuf. Technol. 31(5–6), 443–449 (2006). https://doi.org/10.1007/s00170-005-0233-4

    Article  Google Scholar 

  54. Kondo, E., Ota, H., Kawai, T.: New method to detect regenerative chatter using spectral analysis, Part 1: basic study on criteria for detection of chatter. J. Manuf. Sci. Eng. Trans. ASME 119(4), 4–9 (1997)

    Google Scholar 

  55. Kotaiah, K.R., Srinivas, J., Babu, K.J., Srinivas, K.: Prediction of optimal cutting states during inward turning: an experimental approach. Mater. Manuf. Process. 25(6), 432–441 (2010). https://doi.org/10.1080/10426910903229321

    Article  Google Scholar 

  56. Kuljanic, E., Sortino, M., Totis, G.: Multisensor approaches for chatter detection in milling. J. Sound Vib. 312(4–5), 672–693 (2008). https://doi.org/10.1016/j.jsv.2007.11.006

    Article  Google Scholar 

  57. Kuljanic, E., Totis, G., Sortino, M.: Development of an intelligent multisensor chatter detection system in milling. Mech. Syst. Signal Process. 23(5), 1704–1718 (2009). https://doi.org/10.1016/j.ymssp.2009.01.003

    Article  Google Scholar 

  58. Kurata, Y., Merdol, S.D., Altintas, Y., Suzuki, N., Shamoto, E.: Chatter stability in turning and milling with in process identified process damping. J. Adv. Mech. Des. Syst. Manuf. 4(6), 1107–1118 (2010). https://doi.org/10.1299/jamdsm.4.1107

    Article  Google Scholar 

  59. Kwak, J.S., Ha, M.K.: Neural network approach for diagnosis of grinding operation by acoustic emission and power signals. J. Mater. Process. Technol. 147(1), 65–71 (2004). https://doi.org/10.1016/j.jmatprotec.2003.11.016

    Article  Google Scholar 

  60. Lajmert, P., Rusinek, R., Kruszynski, B.: Chatter identification in milling of Inconel 625 based on recurrence plot technique and hilbert vibration decomposition. MATEC Web Conf. 148, 1–5 (2018). https://doi.org/10.1051/matecconf/201814809003

    Article  Google Scholar 

  61. Lamraoui, M., Barakat, M., Thomas, M., El Badaoui, M.: Chatter detection in milling machines by neural network classification and feature selection. J. Vib. Control 21(7), 1251–1266 (2015). https://doi.org/10.1177/1077546313493919

    Article  Google Scholar 

  62. Lamraoui, M., Thomas, M., El Badaoui, M.: Cyclostationarity approach for monitoring chatter and tool wear in high speed milling. Mech. Syst. Signal Process. 44(1–2), 177–198 (2014). https://doi.org/10.1016/j.ymssp.2013.05.001

    Article  Google Scholar 

  63. Lange, J.H., Abu-Zahra, N.H.: Tool chatter monitoring in turning operations using wavelet analysis of ultrasound waves. Int. J. Adv. Manuf. Technol. 20(4), 248–254 (2002). https://doi.org/10.1007/s001700200149

    Article  Google Scholar 

  64. Lee, B.Y., Tarng, Y.S., Ma, S.C.: Modeling of the process damping force in chatter vibration. Int. J. Mach. Tools Manuf 35(7), 951–962 (1995). https://doi.org/10.1016/0890-6955(94)00046-M

    Article  Google Scholar 

  65. Lei, N., Soshi, M.: Vision-based system for chatter identification and process optimization in high-speed milling. Int. J. Adv. Manuf. Technol. 89(9–12), 2757–2769 (2017). https://doi.org/10.1007/s00170-016-9770-2

    Article  Google Scholar 

  66. Li, D., Cao, H., Chen, X.: Fuzzy control of milling chatter with piezoelectric actuators embedded to the tool holder. Mech. Syst. Signal Process. 148(28), 107190 (2021). https://doi.org/10.1016/j.ymssp.2020.107190

    Article  Google Scholar 

  67. Li, D., Cao, H., Chen, X.: Displacement difference feedback control of chatter in milling processes. Int. J. Adv. Manuf. Technol. 120(9–10), 6053–6066 (2022). https://doi.org/10.1007/s00170-022-09128-w

    Article  Google Scholar 

  68. Li, D., Cao, H., Zhang, X., Chen, X., Yan, R.: Model predictive control based active chatter control in milling process. Mech. Syst. Signal Process. 128(28), 266–281 (2019). https://doi.org/10.1016/j.ymssp.2019.03.047

    Article  Google Scholar 

  69. Li, K., He, S., Li, B., Liu, H., Mao, X., Shi, C.: A novel online chatter detection method in milling process based on multiscale entropy and gradient tree boosting. Mech. Syst. Signal Process. 135, 106385 (2020). https://doi.org/10.1016/j.ymssp.2019.106385

    Article  Google Scholar 

  70. Li, X., Wan, S., Yuan, J., Yin, Y., Hong, J.: Active suppression of milling chatter with LMI-based robust controller and electromagnetic actuator. J. Mater. Process. Technol. 297(May), 117238 (2021). https://doi.org/10.1016/j.jmatprotec.2021.117238

    Article  Google Scholar 

  71. Li, D., Yip, W.S., Cao, H., Zhang, H., Tang, Y.M., To, S.: “Chatter suppression in diamond turning using magnetic field assistance. J. Mater. Process. Technol. 321(August), 118150 (2023). https://doi.org/10.1016/j.jmatprotec.2023.118150

    Article  Google Scholar 

  72. Lin, S.C., Hu, M.R.: Low vibration control system in turning. Int. J. Mach. Tools Manuf 32(5), 629–640 (1992). https://doi.org/10.1016/0890-6955(92)90018-C

    Article  Google Scholar 

  73. Liu, H., Bo, Q., Zhang, H., Wang, Y.: Analysis of Q-factor’s identification ability for thin-walled part flank and mirror milling chatter. Int. J. Adv. Manuf. Technol. 99(5–8), 1673–1686 (2018). https://doi.org/10.1007/s00170-018-2580-y

    Article  Google Scholar 

  74. Liu, H., Chen, Q., Li, B., Mao, X., Mao, K., Peng, F.: On-line chatter detection using servo motor current signal in turning. Sci. China Technol. Sci. 54(12), 3119–3129 (2011). https://doi.org/10.1007/s11431-011-4595-6

    Article  Google Scholar 

  75. Liu, Z., Memon, A.A., Negussie, W., Ketema, H.: Interpreting the sustainable development of human capital and the sheepskin effects in returns to higher education: empirical evidence from Pakistan. Sustain. (2020). https://doi.org/10.3390/su12062393

    Article  Google Scholar 

  76. Liu, Y., Wang, X., Lin, J., Zhao, W.: Early chatter detection in gear grinding process using servo feed motor current. Int. J. Adv. Manuf. Technol. 83(9–12), 1801–1810 (2016). https://doi.org/10.1007/s00170-015-7687-9

    Article  Google Scholar 

  77. Liu, Y., Wu, B., Ma, J., Zhang, D.: Chatter identification of the milling process considering dynamics of the thin-walled workpiece. Int. J. Adv. Manuf. Technol. 89(5–8), 1765–1773 (2017). https://doi.org/10.1007/s00170-016-9190-3

    Article  Google Scholar 

  78. Liu, C., Zhu, L., Ni, C.: Chatter detection in milling process based on VMD and energy entropy. Mech. Syst. Signal Process. 105, 169–182 (2018). https://doi.org/10.1016/j.ymssp.2017.11.046

    Article  Google Scholar 

  79. Lu, K., Lian, Z., Gu, F., Liu, H.: Model-based chatter stability prediction and detection for the turning of a flexible workpiece. Mech. Syst. Signal Process. 100, 814–826 (2018). https://doi.org/10.1016/j.ymssp.2017.08.022

    Article  Google Scholar 

  80. Ma, W., Yang, Y., Jin, X.: Chatter suppression in micro-milling using shank-mounted Two-DOF tuned mass damper. Precis. Eng. 72(May), 144–157 (2021). https://doi.org/10.1016/j.precisioneng.2021.04.017

    Article  Google Scholar 

  81. Mahdavinejad, R.: Finite element analysis of machine and workpiece instability in turning. Int. J. Mach. Tools Manuf 45(7–8), 753–760 (2005). https://doi.org/10.1016/j.ijmachtools.2004.11.017

    Article  Google Scholar 

  82. Marui, E., Ema, S., Hashimoto, M., Wakasawa, Y.: Plate insertion as a means to improve the damping capacity of a cutting tool system. Int. J. Mach. Tools Manuf 38(10–11), 1209–1220 (1998). https://doi.org/10.1016/S0890-6955(98)00001-7

    Article  Google Scholar 

  83. Mei, Z., Yang, S., Shi, H., Chang, S., Ehmann, K.F.: Active chatter suppression by on-line variation of the rake and clearance angles in turning- principles and experimental investigations. Int. J. Mach. Tools Manuf 34(7), 981–990 (1994). https://doi.org/10.1016/0890-6955(94)90029-9

    Article  Google Scholar 

  84. Merritt, H.E.: Theory of self-excited machine-tool chatter: Contribution to machine-tool chatter research-1. J. Manuf. Sci. Eng. Trans. ASME 87(4), 447–454 (1965). https://doi.org/10.1115/1.3670861

    Article  Google Scholar 

  85. Mobaraki, M., Ratava, J.: Tuning vibration absorbers to mitigate simultaneous regenerative and mode-coupling chatter. Noise Vib. Worldw. (2023). https://doi.org/10.1177/09574565231179731

    Article  Google Scholar 

  86. Monnin, J., Kuster, F., Wegener, K.: Optimal control for chatter mitigation in milling-Part 2: experimental validation. Control. Eng. Pract. 24(1), 167–175 (2014). https://doi.org/10.1016/j.conengprac.2013.11.011

    Article  Google Scholar 

  87. Monnin, J., Kuster, F., Wegener, K.: Optimal control for chatter mitigation in milling-Part 1: modeling and control design. Control. Eng. Pract. 24(1), 156–166 (2014). https://doi.org/10.1016/j.conengprac.2013.11.010

    Article  Google Scholar 

  88. Moradi, H., Bakhtiari-Nejad, F., Movahhedy, M.R., Vossoughi, G.: Stability improvement and regenerative chatter suppression in nonlinear milling process via tunable vibration absorber. J. Sound Vib. 331(21), 4668–4690 (2012). https://doi.org/10.1016/j.jsv.2012.05.032

    Article  Google Scholar 

  89. Moradi, H., Movahhedy, M.R., Vossoughi, G.R.: Robust control strategy for suppression of regenerative chatter in turning. J. Manuf. Process. 11(2), 55–65 (2009). https://doi.org/10.1016/j.jmapro.2009.06.002

    Article  Google Scholar 

  90. Munoa, J., et al.: Chatter suppression techniques in metal cutting. CIRP Ann. - Manuf. Technol. 65(2), 785–808 (2016). https://doi.org/10.1016/j.cirp.2016.06.004

    Article  Google Scholar 

  91. N. H. Hanna, S. A. Tobias (1973) Theory of nonlinear regenerative chatter. Am. Soc. Mech. Eng., no. 73-DET-20

  92. Olgac, N., Holm-Hansen, B.T.: A novel active vibration absorption technique: delayed resonator. J. Sound Vib. 176(1), 93–104 (1994). https://doi.org/10.1006/jsvi.1994.1360

    Article  Google Scholar 

  93. Otto, A., Rauh, S., Ihlenfeldt, S., Radons, G.: Stability of milling with non-uniform pitch and variable helix Tools. Int. J. Adv. Manuf. Technol. 89(9–12), 2613–2625 (2017). https://doi.org/10.1007/s00170-016-9762-2

    Article  Google Scholar 

  94. P. Thangavel, V. Selladurai, R. Shanmugam (2006) Application of response surface methodology for predicting flank wear in turning operation. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 220(6):997–1003. https://doi.org/10.1243/09544054JEM460SC.

  95. P. Bach, M. Poláček, P. Chvojka, J. Drobílek (2014) Dynamic forces in unstable cutting during turning operation. Manuf. Technol.; 14(1):3–8. https://doi.org/10.21062/ujep/x.2014/a/1213-2489/mt/14/1/3.

  96. Paek, R., Ha, S.H., Ri, S.C.: Optimal determination of spindle speed variation type for the suppression of chatter in turning. Int. J. Adv. Manuf. Technol. 126(5–6), 2481–2496 (2023). https://doi.org/10.1007/s00170-023-11192-9

    Article  Google Scholar 

  97. Pan, J., Liu, Z., Wang, X., Chen, C., Pan, X.: Boring chatter identification by multi-sensor feature fusion and manifold learning. Int. J. Adv. Manuf. Technol. 109(3–4), 1137–1151 (2020). https://doi.org/10.1007/s00170-020-05611-4

    Article  Google Scholar 

  98. Patwari, M.A.U., Nurul Amin, A.K.M., Faris, W., Ishtiyaq, M.H.: Investigations of formation of chatter in a non-wavy surface during thread cutting and turning operations. Adv. Mater. Res. 83–86, 637–645 (2010). https://doi.org/10.4028/www.scientific.net/AMR.83-86.637

    Article  Google Scholar 

  99. Pimenov, D.Y., Bustillo, A., Wojciechowski, S., Sharma, V.S., Gupta, M.K., Kuntoğlu, M.: Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review. J. Intell. Manuf. (2022). https://doi.org/10.1007/s10845-022-01923-2

    Article  Google Scholar 

  100. Quintana, G., Ciurana, J.: Chatter in machining processes: a review. Int. J. Mach. Tools Manuf 51(5), 363–376 (2011). https://doi.org/10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  101. R. Wäsche, “Colloidal processing of metal bonded niobium carbide (NbC-Ni),” 19. Plansee Seminar. Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany (2017). [Online]. https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/40513

  102. Rahimi, M.H., Huynh, H.N., Altintas, Y.: On-line chatter detection in milling with hybrid machine learning and physics-based model. CIRP J. Manuf. Sci. Technol. 35, 25–40 (2021). https://doi.org/10.1016/j.cirpj.2021.05.006

    Article  Google Scholar 

  103. Rusinek, R., Lajmert, P., Krzysztof, K., Kruszynski, B., Warminski, J.: Chatter identification methods on the basis of time series measured during titanium superalloy milling. Int. J. Mech. Sci. 99, 196–207 (2015). https://doi.org/10.1016/j.ijmecsci.2015.05.013

    Article  Google Scholar 

  104. S A Tobias, Machine Tool Vibration: Tobias, S A: 9780216874541: Books. Blackie, Alberta (1965)

  105. Schmitz, T.L.: Chatter recognition by a statistical evaluation of the synchronously sampled audio signal [2]. J. Sound Vib. 262(3), 721–730 (2003). https://doi.org/10.1016/S0022-460X(03)00119-6

    Article  Google Scholar 

  106. Schmitz, T.L., Medicus, K., Dutterer, B.: Exploring once-per-revolution audio signal variance as a chatter indicator. Mach. Sci. Technol. 6(2), 215–233 (2002). https://doi.org/10.1081/MST-120005957

    Article  Google Scholar 

  107. Sener, B., Gudelek, M.U., Ozbayoglu, A.M., Unver, H.O.: “A novel chatter detection method for milling using deep convolution neural networks. Meas. J. Int. Meas. Confed. 182(March), 109689 (2021). https://doi.org/10.1016/j.measurement.2021.109689

    Article  Google Scholar 

  108. Shi, F., Cao, H., Zhang, X., Chen, X.: A reinforced k-nearest neighbors method with application to chatter identification in high-speed milling. IEEE Trans. Ind. Electron. 67(12), 10844–10855 (2020). https://doi.org/10.1109/TIE.2019.2962465

    Article  Google Scholar 

  109. Shi, W., Jia, D.K., Liu, X.L., Yan, F.G., Li, Y.F.: Application of continuous wavelet features and multi-class sphere SVM to chatter prediction. Adv. Mater. Res. 188, 675–680 (2011). https://doi.org/10.4028/www.scientific.net/AMR.188.675

    Article  Google Scholar 

  110. Siddhpura, M., Paurobally, R.: A review of chatter vibration research in turning. Int. J. Mach. Tools Manuf 61, 27–47 (2012). https://doi.org/10.1016/j.ijmachtools.2012.05.007

    Article  Google Scholar 

  111. Siddhpura, M., Paurobally, R.: Experimental investigation of chatter vibrations in facing and turning processes. Int. J. Mech. Aerospace, Ind. Mechatron. Manuf. Eng.; 7(6), pp. 84–89 (2013)

  112. Sisson, T.R., Kegg, R.L.: An explanation of low-speed chatter effects. J. Manuf. Sci. Eng. Trans. ASME 91(4), 951–958 (1969). https://doi.org/10.1115/1.3591778

    Article  Google Scholar 

  113. Suzuki, N., Nishimura, K., Shamoto, E., Yoshino, K.: Effect of cross transfer function on chatter stability in plunge cutting. J. Adv. Mech. Des. Syst. Manuf. 4(5), 883–891 (2010). https://doi.org/10.1299/jamdsm.4.883

    Article  Google Scholar 

  114. Szydłowski, M., Powałka, B.: Chatter detection algorithm based on machine vision. Int. J. Adv. Manuf. Technol. 62(5–8), 517–528 (2012). https://doi.org/10.1007/s00170-011-3816-2

    Article  Google Scholar 

  115. Tangjitsitcharoen, S.: In-process monitoring and detection of chip formation and chatter for CNC turning. J. Mater. Process. Technol. 209(10), 4682–4688 (2009). https://doi.org/10.1016/j.jmatprotec.2008.10.054

    Article  Google Scholar 

  116. Tangjitsitcharoen, S., Moriwaki, T.: Intelligent monitoring and identification of cutting states of chips and chatter on CNC turning machine. J. Manuf. Process. 10(1), 40–46 (2008). https://doi.org/10.1016/j.manpro.2008.01.001

    Article  Google Scholar 

  117. Tangjitsitcharoen, S., Saksri, T., Ratanakuakangwan, S.: Advance in chatter detection in ball end milling process by utilizing wavelet transform. J. Intell. Manuf. 26(3), 485–499 (2015). https://doi.org/10.1007/s10845-013-0805-3

    Article  Google Scholar 

  118. Tansel, I.N.: Modelling 3-d cutting dynamics with neural networks. Int. J. Mach. Tools Manuf 32(6), 829–853 (1992)

    Article  Google Scholar 

  119. Tansel, I.N., Li, M., Demetgul, M., Bickraj, K., Kaya, B., Ozcelik, B.: Detecting chatter and estimating wear from the torque of end milling signals by using Index Based Reasoner (IBR). Int. J. Adv. Manuf. Technol. 58(1–4), 109–118 (2012). https://doi.org/10.1007/s00170-010-2838-5

    Article  Google Scholar 

  120. Tansel, I.N., Wagiman, A., Tziranis, A.: Recognition of chatter with neural networks. Int. J. Mach. Tools Manuf 31(4), 539–552 (1991). https://doi.org/10.1016/0890-6955(91)90035-2

    Article  Google Scholar 

  121. Tansel, I.N., Wang, X., Chen, P., Yenilmez, A., Ozcelik, B.: Transformations in machining. Part 2. Evaluation of machining quality and detection of chatter in turning by using s-transformation. Int. J. Mach. Tools Manuf 46(1), 43–50 (2006). https://doi.org/10.1016/j.ijmachtools.2005.04.011

    Article  Google Scholar 

  122. Tarng, Y.S., Chen, M.C.: An intelligent sensor for detection of milling chatter. J. Intell. Manuf. 5(3), 193–200 (1994). https://doi.org/10.1007/BF00123923

    Article  Google Scholar 

  123. Tarng, Y.S., Li, T.C., Chen, M.C.: On-line drilling chatter recognition and avoidance using an ART2-A neural network. Int. J. Mach. Tools Manuf 34(7), 949–957 (1994). https://doi.org/10.1016/0890-6955(94)90027-2

    Article  Google Scholar 

  124. Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D.: Advanced monitoring of machining operations. CIRP Ann. - Manuf. Technol. 59(2), 717–739 (2010). https://doi.org/10.1016/j.cirp.2010.05.010

    Article  Google Scholar 

  125. Thaler, T., Potočnik, P., Bric, I., Govekar, E.: Chatter detection in band sawing based on discriminant analysis of sound features. Appl. Acoust. 77, 114–121 (2014). https://doi.org/10.1016/j.apacoust.2012.12.004

    Article  Google Scholar 

  126. Tlusty, J., Polacek, M.: The stability of machine tools against self excited vibrations in machining. Int. Res. Prod. Eng. ASME, pp. 465–474 (1963).

  127. Tran, M.Q., Liu, M.K., Elsisi, M.: Effective multi-sensor data fusion for chatter detection in milling process. ISA Trans. (2021). https://doi.org/10.1016/j.isatra.2021.07.005

    Article  Google Scholar 

  128. Tunç, L.T., Budak, E.: Effect of cutting conditions and tool geometry on process damping in machining. Int. J. Mach. Tools Manuf 57, 10–19 (2012). https://doi.org/10.1016/j.ijmachtools.2012.01.009

    Article  Google Scholar 

  129. Turkes, E., Orak, S., Neseli, S., Yaldiz, S.: Linear analysis of chatter vibration and stability for orthogonal cutting in turning. Int. J. Refract. Met. Hard Mater. 29(2), 163–169 (2011). https://doi.org/10.1016/j.ijrmhm.2010.10.002

    Article  Google Scholar 

  130. Urbikain, G., López De Lacalle, L.N., Campa, F.J., Fernández, A., Elías, A.: Stability prediction in straight turning of a flexible workpiece by collocation method. Int. J. Mach. Tools Manuf 54–55, 73–81 (2012). https://doi.org/10.1016/j.ijmachtools.2011.11.008

    Article  Google Scholar 

  131. Vela-Martínez, L., Jáuregui-Correa, J.C., Rubio-Cerda, E., Herrera-Ruiz, G., Lozano-Guzmán, A.: Analysis of compliance between the cutting tool and the workpiece on the stability of a turning process. Int. J. Mach. Tools Manuf 48(9), 1054–1062 (2008). https://doi.org/10.1016/j.ijmachtools.2007.10.016

    Article  Google Scholar 

  132. Wan, S., Li, X., Chen, W., Hong, J.: Investigation on milling chatter identification at early stage with variance ratio and Hilbert–Huang transform. Int. J. Adv. Manuf. Technol. 95(9–12), 3563–3573 (2018). https://doi.org/10.1007/s00170-017-1410-y

    Article  Google Scholar 

  133. Wan, S., Li, X., Su, W., Yuan, J., Hong, J., Jin, X.: Active damping of milling chatter vibration via a novel spindle system with an integrated electromagnetic actuator. Precis. Eng. 57(28), 203–210 (2019). https://doi.org/10.1016/j.precisioneng.2019.04.007

    Article  Google Scholar 

  134. Wan, S., Li, X., Yin, Y., Hong, J.: Milling chatter detection by multi-feature fusion and adaboost-SVM. Mech. Syst. Signal Process. 156, 107671 (2021). https://doi.org/10.1016/j.ymssp.2021.107671

    Article  Google Scholar 

  135. Wang, Y., Bo, Q., Liu, H., Hu, L., Zhang, H.: Mirror milling chatter identification using Q-factor and SVM. Int. J. Adv. Manuf. Technol. 98(5–8), 1163–1177 (2018). https://doi.org/10.1007/s00170-018-2318-x

    Article  Google Scholar 

  136. Wang, Z.C., Cleghorn, W.L.: Stability analysis of spinning stepped-shaft workpieces in a turning process. J. Sound Vib. 250(2), 356–367 (2002). https://doi.org/10.1006/jsvi.2001.3725

    Article  Google Scholar 

  137. Wang, G., Dong, H., Guo, Y., Ke, Y.: Early chatter identification of robotic boring process using measured force of dynamometer. Int. J. Adv. Manuf. Technol. 94(1–4), 1243–1252 (2018). https://doi.org/10.1007/s00170-017-0941-6

    Article  Google Scholar 

  138. Wang, M., Fei, R.: On-line chatter detection and control in boring based on an electrorheological fluid. Mechatronics 11(7), 779–792 (2001). https://doi.org/10.1016/S0957-4158(00)00044-1

    Article  Google Scholar 

  139. Wang, W.K., Wan, M., Zhang, W.H., Yang, Y.: “Chatter detection methods in the machining processes: a review. J. Manuf. Process. 77(October), 240–259 (2022). https://doi.org/10.1016/j.jmapro.2022.03.018

    Article  Google Scholar 

  140. Wang, M., Zan, T., Yang, Y., Fei, R.: Design and implementation of nonlinear TMD for chatter suppression: an application in turning processes. Int. J. Mach. Tools Manuf 50(5), 474–479 (2010). https://doi.org/10.1016/j.ijmachtools.2010.01.004

    Article  Google Scholar 

  141. Wu, D.W.: A new approach of formulating the transfer function for dynamic cutting processes. J. Manuf. Sci. Eng. Trans. ASME 111(1), 37–47 (1989). https://doi.org/10.1115/1.3188730

    Article  Google Scholar 

  142. Wu, G., Li, G., Pan, W., Raja, I., Wang, X., Ding, S.: A state-of-art review on chatter and geometric errors in thin-wall machining processes. J. Manuf. Process. 68(March), 454–480 (2021). https://doi.org/10.1016/j.jmapro.2021.05.055

    Article  Google Scholar 

  143. Xu, X., Zhou, T., Hu, H., Hu, Y.: Chatter frequency identification and amplitude tracking using short-time difference spectrum analysis. IEEE Trans. Instrum. Meas. 69(12), 9844–9852 (2020). https://doi.org/10.1109/TIM.2020.3003361

    Article  Google Scholar 

  144. Yang, Y., Muñoa, J., Altintas, Y.: Optimization of multiple tuned mass dampers to suppress machine tool chatter. Int. J. Mach. Tools Manuf 50(9), 834–842 (2010). https://doi.org/10.1016/j.ijmachtools.2010.04.011

    Article  Google Scholar 

  145. Yang, K., Wang, G., Dong, Y., Zhang, Q., Sang, L.: Early chatter identification based on an optimized variational mode decomposition. Mech. Syst. Signal Process. 115, 238–254 (2019). https://doi.org/10.1016/j.ymssp.2018.05.052

    Article  Google Scholar 

  146. Yao, Z., Mei, D., Chen, Z.: On-line chatter detection and identification based on wavelet and support vector machine. J. Mater. Process. Technol. 210(5), 713–719 (2010). https://doi.org/10.1016/j.jmatprotec.2009.11.007

    Article  Google Scholar 

  147. Yue, C., Gao, H., Liu, X., Liang, S.Y., Wang, L.: A review of chatter vibration research in milling. Chin. J. Aeronaut. 32(2), 215–242 (2019). https://doi.org/10.1016/j.cja.2018.11.007

    Article  Google Scholar 

  148. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  Google Scholar 

  149. Zaeh, M.F., Kleinwort, R., Fagerer, P., Altintas, Y.: Automatic tuning of active vibration control systems using inertial actuators. CIRP Ann. - Manuf. Technol. 66(1), 365–368 (2017). https://doi.org/10.1016/j.cirp.2017.04.051

    Article  Google Scholar 

  150. Zhang, C., Yue, X., Jiang, Y., Zheng, W.: A hybrid approach of ANN and HMM for cutting chatter monitoring. Adv. Mater. Res. 97–101, 3225–3232 (2010). https://doi.org/10.4028/www.scientific.net/AMR.97-101.3225

    Article  Google Scholar 

  151. Zhao, Y., Adjallah, K.H., Sava, A., Wang, Z.: MaxEnt feature-based reliability model method for real-time detection of early chatter in high-speed milling. ISA Trans. 113, 39–51 (2021). https://doi.org/10.1016/j.isatra.2020.07.022

    Article  Google Scholar 

  152. Zheng, Q., Chen, G., Jiao, A.: Chatter detection in milling process based on the combination of wavelet packet transform and PSO-SVM. Int. J. Adv. Manuf. Technol. 120(1–2), 1237–1251 (2022). https://doi.org/10.1007/s00170-022-08856-3

    Article  Google Scholar 

  153. Zhu, L., Liu, C.: Recent progress of chatter prediction, detection and suppression in milling. Mech. Syst. Signal Process. 143, 106840 (2020). https://doi.org/10.1016/j.ymssp.2020.106840

    Article  Google Scholar 

  154. Zhu, K.P., Wong, Y.S., Hong, G.S.: Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results. Int. J. Mach. Tools Manuf 49(7–8), 537–553 (2009). https://doi.org/10.1016/j.ijmachtools.2009.02.003

    Article  Google Scholar 

  155. Zhu, W., Zhuang, J., Guo, B., Teng, W., Wu, F.: An optimized convolutional neural network for chatter detection in the milling of thin-walled parts. Int. J. Adv. Manuf. Technol. 106(9–10), 3881–3895 (2020). https://doi.org/10.1007/s00170-019-04899-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the deanship of scientific research at King Khalid University for funding this work through large group project under grant number (RGP. 2/94/44)

Funding

The authors extend their appreciation to the deanship of scientific research at King Khalid University for funding this work through large group project under grant number (RGP. 2/94/44).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Ijaz Khan.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basit, A., Khan, N.B., Ali, S. et al. Chatter detection and suppression in machining processes: a comprehensive analysis. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-023-01716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01716-8

Keywords

Navigation