Skip to main content
Log in

Inconel 625 sustainable milling surface integrity and the dependence on alloy processing route

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The discovery of deepwater oil and gas sources has altered the scenario of world production of oil products, attracting even more attention to nickel superalloys. However, this class of materials can be used in several applications. Furthermore, nickel superalloys are highly dependent on their processing history, and the manner in which superalloys react to machining can directly affect the finished product. This work aims to evaluate the surface integrity of two different materials after cryogenic side-milling in conditions that stimulate severe plastic deformation (SPD) and high heat generation. The results show that the material response to machining depends strongly on the pre-processing route instead of most assumptions. While cryogenic cooling led to significant sub-surface hardness and microstructural changes in wrought Inconel 625 alloy, such changes were not observed for clad Inconel 625. Therefore, in order to achieve significant surface integrity changes, process parameters need to be selected and optimized accordingly. Also, the findings indicate that some new factors established significant affect/change surface integrity: (a) SPD through a high rβ/h ratio; (b) the specific pre-processing thermomechanical history of the workpiece material; and (c) and cryogenic cooling, by changing material properties, reducing temperature and altering cutting phenomena and chip formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Petroleum B (2014) BP Statistical review of world energy, London, UK

  2. British Petroleum (2014) Deepwater oil and gas

  3. International Energy Agency (2013) World energy outlook 2013 factsheet: how will global energy markets evolve to 2035?

  4. Karthick M, Anand P, Meikandan M, Siva Kumar M (2021) Machining performance of Inconel 718 using WOA in PAC. Mater Manuf Process 36:1274–1284. https://doi.org/10.1080/10426914.2021.1905840

    Article  Google Scholar 

  5. Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propuls Power 22:361–374. https://doi.org/10.2514/1.18239

    Article  Google Scholar 

  6. Chen Z, Huang C, Li B et al (2022) Experimental study on surface integrity of Inconel 690 milled by coated carbide inserts. Int J Adv Manuf Technol:3025–3042. https://doi.org/10.1007/s00170-022-09456-x

  7. Yun LF, Yuan WH, Ren X et al (2022) Mechanical and microstructural characterization of additive manufactured Inconel 718 alloy by selective laser melting and laser metal deposition. J Iron Steel Res Int 29:1322–1333. https://doi.org/10.1007/s42243-022-00755-x

    Article  Google Scholar 

  8. Bai W, Bisht A, Roy A et al (2019) Improvements of machinability of aerospace-grade Inconel alloys with ultrasonically assisted hybrid machining. Int J Adv Manuf Technol 101:1143–1156. https://doi.org/10.1007/s00170-018-3012-8

    Article  Google Scholar 

  9. Casarin SJ, De Angelo Sanchez LE, Bianchi EC et al (2021) Effect of burnishing on Inconel 718 workpiece surface heated by infrared radiation. Mater Manuf Process 36:1853–1864. https://doi.org/10.1080/10426914.2021.1926494

    Article  Google Scholar 

  10. Li H, Zou L, Li Z et al (2022) Investigation on abrasive wear of electroplated diamond belt in grinding nickel - based superalloys. Int J Adv Manuf Technol 4419–4429. https://doi.org/10.1007/s00170-022-09468-7

  11. Singh MK, Trehan R, Gupta A (2021) Application of Grey approach to enhance the surface properties during AWJ machining of marine grade Inconel. Adv Mater Process Technol 7:429–445. https://doi.org/10.1080/2374068X.2020.1785206

    Article  Google Scholar 

  12. Zheng Y, Rahman MS, Polycarpou AA (2021) Self-welding of Inconel 617 under high-pressure-high-temperature conditions for nuclear reactors. Nucl Eng Des 371:110941. https://doi.org/10.1016/j.nucengdes.2020.110941

    Article  Google Scholar 

  13. Özdenkçi K, De Blasio C, Sarwar G et al (2019) Techno-economic feasibility of supercritical water gasification of black liquor. Energy 189:116284. https://doi.org/10.1016/j.energy.2019.116284

    Article  Google Scholar 

  14. Aminipour N, Derakhshandeh-Haghighi R (2019) The effect of weld metal composition on microstructural and mechanical properties of dissimilar welds between Monel 400 and Inconel 600. J Mater Eng Perform 28:6111–6124. https://doi.org/10.1007/s11665-019-04328-0

    Article  Google Scholar 

  15. Ahsan MRU, Fan X, Seo GJ et al (2021) Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625. J Mater Sci Technol 74:176–188. https://doi.org/10.1016/j.jmst.2020.10.001

    Article  Google Scholar 

  16. Roy T (2022) Machinability of Inconel 825 under nano-Al 2 O 3 based nanofluid minimum quantity lubrication. Sādhanā 47. https://doi.org/10.1007/s12046-022-01888-1

  17. Anand Krishnan N, Vipindas K, Mathew J (2021) Micro-structure evolution-based force model and surface characteristic studies of Inconel 718 during micro-endmilling. Mach Sci Technol 25:875–898. https://doi.org/10.1080/10910344.2020.1855648

    Article  Google Scholar 

  18. Sivalingam V, Poogavanam G, Natarajan Y, Sun J (2022) Optimization of atomized spray cutting fluid eco-friendly turning of Inconel 718 alloy using ARAS and CODAS methods. Int J Adv Manuf Technol 120:4551–4564. https://doi.org/10.1007/s00170-022-09047-w

    Article  Google Scholar 

  19. Reed RC (2006) The superalloys, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. Farina AB (2014) Efeito do teor de ferro e do tratamento térmico na microestrutura e propriedades da liga UNS N06625. Universidade de Sâo Paulo

    Book  Google Scholar 

  21. Bihlet UD, Dahl KV, Somers MAJ (2014) Microstructure of precipitation hardenable powder metallurgical Ni alloys containing 35 to 45 pct Cr and 3.5 to 6 pct Nb. Metall Mater Trans A Phys Metall Mater Sci 45:4796–4809. https://doi.org/10.1007/s11661-014-2469-9

    Article  Google Scholar 

  22. Periane Natarajan S, Vaudreuil S, Chibane H et al (2022) Tool life and surface integrity characteristics in milling of SLM and C&W Inconel 718 in dry and MQL condition. Int J Adv Manuf Technol 121:647–659. https://doi.org/10.1007/s00170-022-09327-5

    Article  Google Scholar 

  23. Courtney TH (2000) Mechanical behaviour of materials, 2nd edn. Waveland Press, Illinois

    Google Scholar 

  24. Martin JW (1998) Precipitation hardening, 2nd edn. Butterworth Heinemann, Woburn, MA

    Google Scholar 

  25. Liu M, Wang Q, Cai Y et al (2021) Comparison in deformation behavior, microstructure, and failure mechanism of nickel base alloy 625 under two strain rates. Materials (Basel) 14:2652. https://doi.org/10.3390/ma14102652

    Article  Google Scholar 

  26. Pai HC, Sundararaman M (2005) A comparison of the precipitation kinetics of y" particles in virgin and re-solutioned alloy 625. In: Superalloys 718, 625, 706 and Various Derivatives. pp 487–495

  27. Davidson JH (1991) The influence of processing variables on the microstructure and properties of PM 625 alloy. In: Superalloys 718, 625 and Various Derivatives. 229–239

  28. Liu F, Lyu F, Liu F et al (2020) Laves phase control of Inconel 718 superalloy fabricated by laser direct energy deposition via ı aging and solution treatment. J Mater Res Technol 9:9753–9765. https://doi.org/10.1016/j.jmrt.2020.06.061

    Article  Google Scholar 

  29. Singh JB, Chakravartty JK, Sundararaman M (2013) Work hardening behaviour of service aged alloy 625. Mater Sci Eng A 576:239–242. https://doi.org/10.1016/j.msea.2013.03.091

    Article  Google Scholar 

  30. Wilson ILW, Gourle RG, Walkosak RM, Bruck GJ (1991) The effect of heat input on microstructure and cracking in alloy 625 weld overlays. In: Superalloys 718, 625 and Various Derivatives. 735–747

  31. Sui S, Chen J, Li Z et al (2020) Investigation of dissolution behavior of laves phase in Inconel 718 fabricated by laser directed energy deposition. Addit Manuf 32:101055. https://doi.org/10.1016/j.addma.2020.101055

    Article  Google Scholar 

  32. Cieslak MJ (1991) The solidification behavior of an alloy 625/718 variant. In: Superalloys 718, 625 and Various Derivatives (1991). 71–80

  33. Cieslak MJ, Headley TJ, Frank RB (1989) The welding metallurgy of custom age 625 plus alloy. Weld J 68:473-s to 482-s

  34. Chang S-H (2009) In situ TEM observation of γ′, γ″ and δ precipitations on Inconel 718 superalloy through HIP treatment. J Alloys Compd 486:716–721. https://doi.org/10.1016/j.jallcom.2009.07.046

    Article  Google Scholar 

  35. Maguire MC, Michael JR (1994) Weldability of alloy 718 , 625 and variants. In: Superalloys 718, 625, 706 and Various Derivatives. 881–892

  36. Eiselstein H, Tillack D (1991) The invention and definition of alloy 625. Superalloys:1–14

  37. Metals S (2013) Inconel alloy 625(625):1–18 SMC-066

    Google Scholar 

  38. Zhu D, Zhang X, Ding H (2013) Tool wear characteristics in machining of nickel-based superalloys. Int J Mach Tools Manuf 64:60–77. https://doi.org/10.1016/j.ijmachtools.2012.08.001

    Article  Google Scholar 

  39. Sims CT, Hagel WC (1972) The superalloys, 1st edn. Wiley-Intersciense, New Jersey

    Google Scholar 

  40. Jawahir IS, Attia H, Biermann D et al (2016) Cryogenic manufacturing processes. CIRP Ann - Manuf Technol 65:713–736. https://doi.org/10.1016/j.cirp.2016.06.007

    Article  Google Scholar 

  41. Shokrani A, Dhokia V, Muñoz-Escalona P, Newman ST (2013) State-of-the-art cryogenic machining and processing. Int J Comput Integr Manuf 26:616–648. https://doi.org/10.1080/0951192X.2012.749531

    Article  Google Scholar 

  42. Abdul Halim NH, Che Haron CH, Abdul Ghani J (2020) Sustainable machining of hardened Inconel 718: a comparative study. Int J Precis Eng Manuf 21:1375–1387. https://doi.org/10.1007/s12541-020-00332-w

    Article  Google Scholar 

  43. Ambrosy F, Zanger F, Schulze V, Jawahir IS (2014) An experimental study of cryogenic machining on nanocrystalline surface layer generation. Procedia CIRP 13:169–174. https://doi.org/10.1016/j.procir.2014.04.029

    Article  Google Scholar 

  44. Shen N, Ding H, Pu Z et al (2017) Enhanced surface integrity from cryogenic machining of AZ31B Mg alloy: a physics-based analysis with microstructure prediction. J Manuf Sci Eng Trans ASME 139:1–13. https://doi.org/10.1115/1.4034279

    Article  Google Scholar 

  45. Volokitin A, Naizabekov A, Volokitina I et al (2021) Thermomechanical treatment of steel using severe plastic deformation and cryogenic cooling. Mater Lett 304:130598. https://doi.org/10.1016/j.matlet.2021.130598

    Article  Google Scholar 

  46. Umbrello D, Pu Z, Caruso S et al (2011) The effects of cryogenic cooling on surface integrity in hard machining. Procedia Eng 19:371–376. https://doi.org/10.1016/j.proeng.2011.11.127

    Article  Google Scholar 

  47. Gong L, Zhao W, Ren F et al (2019) Experimental study on surface integrity in cryogenic milling of 35CrMnSiA high-strength steel. Int J Adv Manuf Technol 103:605–615. https://doi.org/10.1007/s00170-019-03577-6

    Article  Google Scholar 

  48. Jawahir IS, Kaynak Y, Lu T (2014) The impact of novel material processing methods on component quality, life and performance. Procedia CIRP 22:33–44. https://doi.org/10.1016/j.procir.2014.09.001

    Article  Google Scholar 

  49. Pu Z, Outeiro JC, Batista AC et al (2012) Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components. Int J Mach Tools Manuf 56:17–27. https://doi.org/10.1016/j.ijmachtools.2011.12.006

    Article  Google Scholar 

  50. Chaabani S, Arrazola PJ, Ayed Y et al (2020) Comparison between cryogenic coolants effect on tool wear and surface integrity in finishing turning of Inconel 718. J Mater Process Technol 285:116780. https://doi.org/10.1016/j.jmatprotec.2020.116780

    Article  Google Scholar 

  51. Anburaj R, Pradeep Kumar M (2021) Influences of cryogenic CO2 and LN2 on surface integrity of Inconel 625 during face milling. Mater Manuf Process 00:1–11. https://doi.org/10.1080/10426914.2021.1914850

    Article  Google Scholar 

  52. Varghese V, Akhil K, Ramesh MR, Chakradhar D (2019) Investigation on the performance of AlCrN and AlTiN coated cemented carbide inserts during end milling of maraging steel under dry, wet and cryogenic environments. J Manuf Process 43:136–144. https://doi.org/10.1016/j.jmapro.2019.05.021

    Article  Google Scholar 

  53. Gutzeit K, Basten S, Kirsch B et al (2021) Improving the surface morphology by adjusting the cutting parameters during cryogenic milling of Ti-6Al-4V. SSRN Electron J 2021:24–31. https://doi.org/10.2139/ssrn.3934248

    Article  Google Scholar 

  54. Schoop JM (2015) Engineered surface properties of porous tungsten from cryogenic machining. University of Kentucky

    Google Scholar 

  55. Anburaj R, Pradeep Kumar M (2021) Experimental studies on cryogenic CO2 face milling of Inconel 625 superalloy. Mater Manuf Process 36:814–826. https://doi.org/10.1080/10426914.2020.1866199

    Article  Google Scholar 

  56. Shokrani A, Dhokia V, Newman ST (2016) Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti–6Al–4V titanium alloy. J Manuf Process 21:172–179. https://doi.org/10.1016/j.jmapro.2015.12.002

    Article  Google Scholar 

  57. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51:250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003

    Article  Google Scholar 

  58. Bertolini R, Lizzul L, Pezzato L et al (2019) Improving surface integrity and corrosion resistance of additive manufactured Ti6Al4V alloy by cryogenic machining. Int J Adv Manuf Technol 104:2839–2850. https://doi.org/10.1007/s00170-019-04180-5

    Article  Google Scholar 

  59. Abedrabbo F, Soriano D, Madariaga A et al (2021) Experimental evaluation and surface integrity analysis of cryogenic coolants approaches in the cylindrical plunge grinding. Sci Rep 11:1–14. https://doi.org/10.1038/s41598-021-00225-6

    Article  Google Scholar 

  60. Jebaraj M, Pradeep Kumar M, Yuvaraj N, Anburaj R (2020) Investigation of surface integrity in end milling of 55NiCrMoV7 die steel under the cryogenic environments. Mach Sci Technol 24:465–488. https://doi.org/10.1080/10910344.2019.1698612

    Article  Google Scholar 

  61. Sastry CC, Hariharan P, Pradeep Kumar M, Muthu Manickam MA (2019) Experimental investigation on boring of HSLA ASTM A36 steel under dry, wet, and cryogenic environments. Mater Manuf Process 34:1352–1379. https://doi.org/10.1080/10426914.2019.1643477

    Article  Google Scholar 

  62. Jamil M, Khan AM, He N et al (2019) Evaluation of machinability and economic performance in cryogenic-assisted hard turning of α-β titanium: a step towards sustainable manufacturing. Mach Sci Technol 23:1022–1046. https://doi.org/10.1080/10910344.2019.1652312

    Article  Google Scholar 

  63. Yildirim ÇV, Kivak T, Sarikaya M, Şirin Ş (2020) Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL. J Mater Res Technol 9:2079–2092. https://doi.org/10.1016/j.jmrt.2019.12.069

    Article  Google Scholar 

  64. Rodrigues MA, Hassui A, Lopes da Silva RH, Loureiro D (2016) Tool life and wear mechanisms during alloy 625 face milling. Int J Adv Manuf Technol 85:1439–1448. https://doi.org/10.1007/s00170-015-8056-4

    Article  Google Scholar 

  65. Hao ZP, Lou ZZ, Fan YH (2021) Study on staged work hardening mechanism of nickel-based single crystal alloy during atomic and close-to-atomic scale cutting. Precis Eng 68:35–56. https://doi.org/10.1016/j.precisioneng.2020.11.005

    Article  Google Scholar 

  66. Tang P, Feng J, Wan Z et al (2021) Influence of grain orientation on hardness anisotropy and dislocation behavior of AlN ceramic in nanoindentation. Ceram Int 47:20298–20309. https://doi.org/10.1016/j.ceramint.2021.04.038

    Article  Google Scholar 

  67. ASTM (2012) E384: standard test method for Knoop and Vickers hardness of materials. ASTM Stand, pp 1–43

    Google Scholar 

  68. Albrecht P (1960) New developments in the theory of the metal-cutting process: Part I. The ploughing process in metal cutting. J Manuf Sci Eng Trans ASME 82:348–356. https://doi.org/10.1115/1.3664242

    Article  Google Scholar 

  69. Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann - Manuf Technol 63:631–653. https://doi.org/10.1016/j.cirp.2014.05.009

    Article  Google Scholar 

  70. Astakhov VP (2004) The assessment of cutting tool wear. Int J Mach Tools Manuf 44:637–647. https://doi.org/10.1016/j.ijmachtools.2003.11.006

    Article  Google Scholar 

  71. Liu Y, Xu D, Agmell M et al (2021) Numerical and experimental investigation of tool geometry effect on residual stresses in orthogonal machining of Inconel 718. Simul Model Pract Theory 106:102187. https://doi.org/10.1016/j.simpat.2020.102187

    Article  Google Scholar 

  72. Liao Z, Polyakov M, Diaz OG et al (2019) Grain refinement mechanism of nickel-based superalloy by severe plastic deformation - mechanical machining case. Acta Mater 180:2–14. https://doi.org/10.1016/j.actamat.2019.08.059

    Article  Google Scholar 

  73. Swaminathan S, Ravi Shankar M, Rao BC et al (2007) Severe plastic deformation (SPD) and nanostructured materials by machining. J Mater Sci 42:1529–1541. https://doi.org/10.1007/s10853-006-0745-9

    Article  Google Scholar 

  74. Fei J, Liu G, Patel K, Özel T (2020) Effects of machining parameters on finishing additively manufactured nickel-based alloy Inconel 625. J Manuf Mater Process 4. https://doi.org/10.3390/jmmp4020032

  75. Komanduri R, Hou ZB (2002) On thermoplastic shear instability in the machining of a titanium alloy (Ti-6Al-4V). Metall Mater Trans A Phys Metall Mater Sci 33:2995–3010. https://doi.org/10.1007/s11661-002-0284-1

    Article  Google Scholar 

  76. Hong SY, Ding Y (2001) Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V. Int J Mach Tools Manuf 41:1417–1437. https://doi.org/10.1016/S0890-6955(01)00026-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical assistance provided for the experimental work at the Institute for Sustainable Manufacturing (ISM) at the University of Kentucky. We would like to thank Laboratório de Fenômenos de Superfície – LFS, represented by Prof. Izabel Fernanda Machado, PhD.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to the study in all the phases of design of experiments, experimentation, writing, and analysis. Then, they read and approved the final manuscript.

Corresponding author

Correspondence to Rodrigo Henriques Lopes da Silva.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

The authors consent to participate.

Consent for publication

The authors consent for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, R.H.L., Schoop, J., Hassui, A. et al. Inconel 625 sustainable milling surface integrity and the dependence on alloy processing route. Int J Adv Manuf Technol 130, 4493–4512 (2024). https://doi.org/10.1007/s00170-023-12938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12938-1

Keywords

Navigation