Skip to main content
Log in

Severe plastic deformation (SPD) and nanostructured materials by machining

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Large plastic strains between 1 and 15 can be imposed in chips formed by plane-strain (2-D) machining of metals and alloys. This approach has been used to examine microstructure changes induced by large strain deformation in model systems—copper and its alloys, precipitation-hardenable aluminum alloys, high-strength materials such as titanium, Inconel 718 and 52100 steel, and an amorphous alloy. It is shown that materials with average grain sizes in the range of 60 nm–1 μm can be created by varying the parameters of machining, which in turn affects the deformation processes. Furthermore, a switch-over from an elongated subgrain microstructure to an equi-axed nanocrystalline microstructure, with a preponderance of large-angle grain boundaries, has been demonstrated at the higher levels of strain in several of these materials. This switch-over can be readily controlled by varying the deformation conditions. Dynamic recrystallization has been demonstrated in select material systems under particular conditions of strain and temperature. This study may be seen as providing an important bridge between furthering the understanding of microstructural refinement by large strain deformation and the practical utilization of nanostructured materials in structural and mechanical applications. Conventional plane-strain machining has been shown to be a viable SPD method for examining the underlying processes of very large strain deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Embury JD, Fisher RM (1966) Acta Metall 14:147

    Article  CAS  Google Scholar 

  2. Langford G, Cohen M (1969) Trans ASM 62:623

    CAS  Google Scholar 

  3. Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov V (1981) Russ Metall 1:99

    Google Scholar 

  4. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  5. Humphreys FJ, Prangnell PB, Bowen JR, Gholinia A, Harris C (1999) Phil Trans R Soc Lond A357:1663

    Article  Google Scholar 

  6. Hughes DA, Hansen N (2000) Acta Mater 48(11):2985

    Article  CAS  Google Scholar 

  7. Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Metall Mater Trans A31:691

    Google Scholar 

  8. Brown TL, Swaminathan S, Chandrasekar S, Compton WD, King AH, Trumble KP (2002) J Mater Res 17(10):2484

    CAS  Google Scholar 

  9. Swaminathan S, Ravi Shankar M, Lee S, Hwang J, King AH, Kezar RF, Rao BC, Brown TL, Chandrasekar S, Compton WD, Trumble KP (2005) Mater Sci Eng A 410–411:358

  10. Ravi Shankar M, Rao BC, Lee S, Chandrasekar S , King AH, Compton WD (2006) Acta Mater 54:3691

    Article  Google Scholar 

  11. Merchant ME (1945) J Appl Phys 16:267

    Article  Google Scholar 

  12. Shaw MC (1984) Metal cutting principles. Oxford University Press

  13. Madhavan V, Chandrasekar S, Farris TN (2000) J Appl Mech 67(1):128

    Article  Google Scholar 

  14. Moscoso W, Olgun E, Compton WD, Chandrasekar S (2005) J Trib 127:238

    Article  Google Scholar 

  15. Lee S, Hwang J, Ravi Shankar M, Chandrasekar S, Compton WD (2006) Metall Mater Trans A37:1633

    Google Scholar 

  16. Steeds JW (1966) Proc Royal Soc London A292:343

    Google Scholar 

  17. Hirsch J, Lucke K, Hatherly M (1988) Acta Metall 36:2905

    Article  CAS  Google Scholar 

  18. Dalla Torre F, Lapovok R, Sandlin J, Thomson PF, Davies CHJ, Pereloma EV (2004) Acta Mater 52:4819

    Article  CAS  Google Scholar 

  19. Belyakov A, Sakai T, Miura H, Tsuzaki K (2001) Phil Mag 81:2629

    Article  CAS  Google Scholar 

  20. Ferrasse S, Segal VM, Hartwig KT, Goforth RE (1997) J Mater Res 12:1253

    CAS  Google Scholar 

  21. Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT (2004) Acta Mater 52:4589

    Article  CAS  Google Scholar 

  22. Kim WJ, Chung CS, Ma DS, Hong SI, Kim HK (2003) Scripta Mater 49:333

    Article  CAS  Google Scholar 

  23. Kelly A, MacMillan NH (1986) Strong solids. Clarendon, Oxford, UK, 222 pp and 373 pp

  24. Lu J, Ravichandran G, Johnson WL (2003) Acta Mater 51:3429

    Article  CAS  Google Scholar 

  25. Kim JJ, Choi Y, Suresh S, Argon AS (2002) Science 295:654

    CAS  Google Scholar 

  26. Chen H, He Y, Shiflet GJ, Poon SJ (1994) Nature 367:541

    Article  CAS  Google Scholar 

  27. Hwang J, Kompella S, Chandrasekar S, Farris TN (2003) ASME J Tribol 125(2):377

    Article  Google Scholar 

  28. Humphreys FJ, Hatherly M (1996) Recrystallization and related annealing phenomena. Pergamon, 364 pp and 391 pp

  29. Ravi Shankar M, Chandrasekar S, King AH, Compton WD (2005) Mater Sci Eng A 410–411:365

Download references

Acknowledgements

We would like to thank the Department of Energy (grant 4000031768 via UT-Batelle), Oak Ridge National Laboratory (ORNL), Ford Motor Company, the State of Indiana’s 21st Century Research and Technology Fund, the NSF (Grants DMI 0500216 and CMS 0200509) and the USAF–PEWG program (via Anteon Corporation) for supporting this work. Additional thanks are also due Drs. Andrew Sherman (Ford) and Ray Johnson (ORNL) for their encouragement of the studies. SS would like to acknowledge support of a National Research Council Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Chandrasekar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaminathan, S., Ravi Shankar, M., Rao, B.C. et al. Severe plastic deformation (SPD) and nanostructured materials by machining. J Mater Sci 42, 1529–1541 (2007). https://doi.org/10.1007/s10853-006-0745-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0745-9

Keywords

Navigation