Skip to main content
Log in

Current status of research on numerical simulation of droplet transfer in CO2 gas–shielded welding

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The heat and mass transfer behavior of droplet transfer in the CO2 welding process plays a decisive role in weld formation, joint microstructure, and service performance. Studying the process of droplet transfer is of great significance for welding metallurgical analysis, stress deformation analysis, process control, and process optimization. In recent years, welding scholars have devoted themselves to the theoretical analysis of the dynamic information of droplet transfer through numerical simulation and combined with experimental research, so that the welding process has changed from qualitative analysis to quantitative analysis, and the theoretical research and experimental research have been upgraded to scientific research. Based on the available data, this paper takes the CO2 welding process as the object and finds that in recent years, the numerical simulation field of CO2 welding droplet transfer has developed in the direction of arc-droplet-pool integration. However, there are still some problems in the existing mathematical model, such as insufficient model accuracy, too much calculation, too many assumptions, and too large gap between the actual and other problems. It can be predicted that the future development direction of the numerical simulation of the droplet transfer will be towards refinement and high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

Code availability

The software is used in the trial state.

References

  1. Yamazaki K, Suzuki R, Shimizu H, Koshiishi F (2012) Spatter and fume reduction in CO 2 gas-shielded arc welding by regulated globular transfer. Weld World 56:12–19. https://doi.org/10.1007/BF03321376

    Article  Google Scholar 

  2. Li K, Cao HM, Li HC (2014) Effects of welding voltage on process stability in hyperbaric gas arc welding. China Weld 23:70–74. https://doi.org/10.3969/j.issn.1004-5341.2014.01.012

    Article  Google Scholar 

  3. Huang JK, Li ZX, Yu SR, Yu XQ, Fan D (2022) Real-time observation and numerical simulation of the molten pool flow and mass transfer behavior during wire arc additive manufacturing. Weld World 66:481–494. https://doi.org/10.1007/s40194-021-01214-z

    Article  Google Scholar 

  4. Li YW, Dong ZH, Liu HF, Babkin A, Lee B, Chang YL (2022) Research progress on transition behavior control of welding droplets. Int J Adv Manuf Technol 120:1571–1582. https://doi.org/10.1007/s00170-022-08928-4

    Article  Google Scholar 

  5. Ogino Y, Hirata Y (2015) Numerical simulation of metal transfer in argon gas-shielded GMAW. Weld World 59:465–473. https://doi.org/10.1007/s40194-015-0221-8

    Article  Google Scholar 

  6. Vora J, Vishvesh JB (2019) Advances in welding technologies for process development. CRC Press. Taylor and Francis, Boca Raton

    Book  Google Scholar 

  7. Kumar A, DebRoy T (2004) Guaranteed fillet weld geometry from heat transfer model and multivariable optimization. Int J Heat Mass Transf 47:5793–5806. https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.038

    Article  MATH  Google Scholar 

  8. Ma GH, Shen XS, Peng XF, Chen P, Zhu XL (2018) Numerical Simulation of Droplet Transfer of AZ31B Magnesium Alloy Based on FLUENT. Transactions on Intelligent Welding Manufacturing: Volume I No. 1 2017. Springer, Singapore, pp 151–158. https://doi.org/10.1007/978-981-10-5355-9_14

  9. Ma GH, Liu JC, Yu LS, Hong L, He YS (2020) Numerical simulation of droplet transfer process in ultrasonic-assisted MIG welding. Sci Technol Weld Join 25:179–189. https://doi.org/10.1080/13621718.2019.1664540

    Article  Google Scholar 

  10. Peng J, Liu J, Yang X, Ge J, Wang X, Li S (2022) Numerical simulation of droplet filling mode on molten pool and keyhole during double-sided laser beam welding of T-joints. Crystals 12:1268. https://doi.org/10.3390/cryst12091268

    Article  Google Scholar 

  11. Bruckner J (2005) Cold metal transfer has a future joining steel to aluminum. Weld J 84(6):38–40

    Google Scholar 

  12. Xu GX, Cao QN, Hu QX, Zhang WW, Liu P, Du BS (2016) Modelling of bead hump formation in high speed gas metal arc welding. Sci Technol Weld Join 21:700–710. https://doi.org/10.1080/13621718.2016.1146427

    Article  Google Scholar 

  13. Chen J, Wu CS (2011) Numerical simulation of humping phenomenon in high speed gas metal arc welding. Front Mater Sci 5:90–97. https://doi.org/10.1007/s11706-011-0123-7

    Article  Google Scholar 

  14. Luo J, Luo Q, Wang XJ, Wang XC (2010) EMS-CO2welding: a new approach to improve droplet transfer characteristics and welding formation. Mater Manuf Process 25:1233–1241. https://doi.org/10.1080/10426914.2010.481000

    Article  Google Scholar 

  15. Li Y, Zhao YQ, Zhou XD, Zhan XH (2022) Effect of droplet transition on the dynamic behavior of the keyhole during 6061 aluminum alloy laser-MIG hybrid welding. Int J Adv Manuf Technol 119:897–909. https://doi.org/10.1007/s00170-021-08270-1

    Article  Google Scholar 

  16. Liu DH, Lei H, Liu JC, Yu LS, Ma GH, Ye J (2021) Numerical analysis of the transition behavior and physical field of ultrasonic-assisted MIG welding droplet. Appl Phys A 127:1–9. https://doi.org/10.1007/s00339-020-04239-1

    Article  Google Scholar 

  17. Matusiak J, Pfeifer T (2013) The research of technological and environmental conditions during low-energetic gas-shielded metal arc welding of aluminium alloys. Weld Int 27:338–344. https://doi.org/10.1080/09507116.2011.600040

    Article  Google Scholar 

  18. Zhu S, Liang YY, Xia D, Wang QW (2012) Research on numerical simulation for welding process in gas metal arc welding rapid forming. J Comput Theor Nanosci 9:1218–1221. https://doi.org/10.1166/jctn.2012.2174

    Article  Google Scholar 

  19. Kim IS, Basu A (1998) A mathematical model of heat transfer and fluid flow in the gas metal arc welding process. J Mater Process Tech 77:17–24. https://doi.org/10.1016/S0924-0136(97)00383-X

    Article  Google Scholar 

  20. Zhang A, Xing YF, Zhang XB, Yang F, Cao J (2022) Analysis of controlled driving and spreading behavior of molten pool in cold metal transfer. Energies 15:1575. https://doi.org/10.3390/en15041575

    Article  Google Scholar 

  21. Fuerschbach PW, DebRoy T, He X (2004) Alloying element vaporization during laser spot welding of stainless steel. No. SAND2004-0647J. Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)

    Google Scholar 

  22. Meng QG, Fang HY, Yang JG, Ji SD (2005) Analysis of temperature and stress field in Al alloy’s twin wire welding. Theoret Appl Fract Mech 44:178–186. https://doi.org/10.1016/j.tafmec.2005.06.006

    Article  Google Scholar 

  23. Tang PM, Xie HQ, Wang S, Ding XP, Duan XM (2019) Numerical analysis of molten pool behavior and spatter formation with evaporation during selective laser melting of 316L stainless steel. Metall and Mater Trans B 50:2273–2283. https://doi.org/10.1007/s11663-019-01641-w

    Article  Google Scholar 

  24. Kang MS, Chung H (2018) Dynamic force balance model considering tapering effect in gas metal arc welding. J Mater Process Technol 257:79–87. https://doi.org/10.1016/j.jmatprotec.2018.02.029

    Article  Google Scholar 

  25. Zhao Y, Chung H (2018) Numerical simulation of the transition of metal transfer from globular to spray mode in gas metal arc welding using phase field method. J Mater Process Technol 251:251–261. https://doi.org/10.1016/j.jmatprotec.2017.08.036

    Article  Google Scholar 

  26. Zhang SY, Ma GH, Peng XF, Xiang Y (2017) Numerical simulation of the effects of bypass current on droplet transfer during AZ31B magnesium alloy DE-GMAW process based on FLUENT. Int J Adv Manuf Technol 90:857–863. https://doi.org/10.1007/s00170-016-9438-y

    Article  Google Scholar 

  27. Choi JH, Lee J, Yoo CD (2001) Dynamic force balance model for metal transfer analysis in arc welding. J Phys D: Appl Phys 34:2658–2664. https://doi.org/10.1088/0022-3727/34/17/313

    Article  Google Scholar 

  28. Amson JC, Salter GR (1962) An analysis of the gas-shielded consumable metal arc welding system. Weld J 41:232–249

    Google Scholar 

  29. Park AY, Kim SR, Hammad MA, Yoo CD (2009) Modification of pinch instability theory for analysis of spray mode in GMAW. J Phys D: Appl Phys 42:1–6. https://doi.org/10.1088/0022-3727/42/22/225503

    Article  Google Scholar 

  30. Lancaster LF (1984) The Physics of Welding[M]. Pergamon Press, Oxford

    Book  Google Scholar 

  31. Zhuo LX, Zhang Z, Liu HY (2007) Research progress of droplet transfer model in GMAW welding. China Mech Eng 18:1501–1504. https://doi.org/10.3321/j.issn:1004-132X.2007.12.027

    Article  Google Scholar 

  32. Li SK, Chen MA, Wu CS (2004) Analytical model for dynamic process of metal transfer in pulsed GMAW. Trans China Weld Inst 25:47–51. https://doi.org/10.1109/JLT.2003.821766

    Article  Google Scholar 

  33. Ersoy U, Kannatey-Asibu E, Hu SJ (2008) Analytical modeling of metal transfer for GMAW in the globular mode. J Manuf Sci Eng-Trans ASME 130:1–8. https://doi.org/10.1115/1.3006317

    Article  Google Scholar 

  34. Robert S (1984) The dripping faucet as a model chaotic system. The Science Frontier Express, Aerial Press

    MATH  Google Scholar 

  35. Watkins AD, Smartt HB, Johnson J (1992) A dynamic model of droplet growth and detachment in GMAW. International trends in welding science and technology, pp 993–997

  36. Ersoy U, Hu SJ, Kannatey-Asibu E (2009) Analytical modeling of metal transfer for GMAW in the globular mode. J Manuf Sci Eng 130(6):061009. https://doi.org/10.1115/1.3006317

  37. Wu CS, Chen MA, Li SK (2006) Mathematical analysis of droplet growth and detachment dynamic process in GMAW welding. Journal of Mechanical Engineering 42(2):76–81

  38. Joo TM (1994) Analysis of molten tip shape by energy method in GMA process. MS Thesis, Korea Advanced Institute of Science & Technology (KAIST)

  39. Choi SK, Kang HL, Yoo CD, Lee TS (1996) Analysis of metal transfer through equilibrium shape of pendent drop in GMAW. Q J Jpn Weld Soc 14:243–247. https://doi.org/10.2207/qjjws.14.243

    Article  Google Scholar 

  40. Joo TM, Yoo CD, Lee TS (1996) Effects of welding conditions on molten drop geometry in arc welding. Weld J 75:62–67

    Google Scholar 

  41. Xu G, Hu J, Tsai HL (2009) Three-dimensional modeling of arc plasma and metal transfer in gas metal arc welding. Int J Heat Mass Transf 52:1709–1724. https://doi.org/10.1063/1.2998907

    Article  MATH  Google Scholar 

  42. Rao ZH, Liao SM, Tsai HL (2010) Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding. J Appl Phys 107:1–11. https://doi.org/10.1063/1.3291121

    Article  Google Scholar 

  43. Choi SK, Yoo CD, Kim YS (1998) Dynamic simulation of metal transfer in GMAW. Globular Spray Tran Modes Weld J 77:38–44. https://doi.org/10.1145/293701.293702

    Article  Google Scholar 

  44. Wang G, Huang PG, Zhang YM (2003) Numerical analysis of metal transfer in gas metal arc welding. Metall Mater Trans B: Process Metall Mater Process Sci 34:345–354. https://doi.org/10.1007/s11663-003-0080-3

    Article  Google Scholar 

  45. Wang G, Huang PG, Zhang YM (2004) Numerical analysis of metal transfer in gas metal arc welding under modified pulsed current conditions. Metall Mater Trans B 35:857–866. https://doi.org/10.1007/s11663-004-0080-y

    Article  Google Scholar 

  46. Wang Y, Tsai HL (2001) Impingement of filler droplets and weld pool dynamics during gas metal arc welding process. Int J Heat Mass Transf 44:2067–2080. https://doi.org/10.1016/S0017-9310(00)00252-0

    Article  MATH  Google Scholar 

  47. Wang F, Hou WK, Kannatey AE, Schultz WW, Wang PC (2003) Modeling and analysis of metal transfer in gas metal arc welding. J Phys D: Appl Phys 36:1143–1152. https://doi.org/10.1088/0022-3727/36/9/313

    Article  Google Scholar 

  48. Simpson SW, Peiyuan Z (1995) Formation of molten droplets at a consumable anode in an electric welding arc. Phys D: Appl Phys 28:1594–1600. https://doi.org/10.1088/0022-3727/28/8/008

    Article  Google Scholar 

  49. Haidar J, Lowke JJ (1996) Predictions of metal droplet formation in arc welding. J Phys D: Appl Phys 29:2951. https://doi.org/10.1063/1.368528

    Article  Google Scholar 

  50. Haidar J, Lowke JJ (1997) Effect of CO2 shielding gas on metal droplet formation in arc welding. IEEE Trans Plasma Sci 25:931–936. https://doi.org/10.1109/27.649598

    Article  Google Scholar 

  51. Haidar J (1998) A theoretical model for gas metal arc welding and gas tungsten arc welding. I. J Appl Phys 84:3518–3529. https://doi.org/10.1063/1.368527

    Article  Google Scholar 

  52. Haidar J (1998) Predictions of metal droplet formation in gas metal arc welding. II. J Appl Phys 84:3530–3540. https://doi.org/10.1063/1.368528

    Article  Google Scholar 

  53. Haidar J (1999) An analysis of heat transfer and fume production in gas metal arc welding. III. J Appl Phys 85:3448–3459. https://doi.org/10.1063/1.370500

    Article  Google Scholar 

  54. Haidar J (2010) The dynamic effects of metal vapour in gas metal arc welding. J Phys D: Appl Phys 43:165204. https://doi.org/10.1088/0022-3727/43/16/165204

    Article  Google Scholar 

  55. Tong WW, Liu S, Shi WC, Hu XJ (2010) Temperature field simulation of CO2 gas shielded welding based on composite heat source model. Hot Work Technol 39:136–140. https://doi.org/10.14158/j.cnki.1001-3814.2010.11.034

    Article  Google Scholar 

  56. Zhu ZM, Wu WK, Chen Q (2006) Numerical simulation and control of droplet shape in short - circuiting transfer CO2 welding. J Mech Eng 42:164–168. https://doi.org/10.3321/j.issn:0577-6686.2006.07.029

    Article  Google Scholar 

  57. Hu J, Tsai HL (2007) Metal transfer and arc plasma in gas metal arc welding. J Heat Transfer 129:1025–1035. https://doi.org/10.1115/1.2724847

    Article  MATH  Google Scholar 

  58. Choi SK, Yoo CD, Kim YS (1998) Dynamic analysis of metal transfer in pulsed current gas metal arc welding. J Phys D: Appl Phys 31:207–215. https://doi.org/10.1088/0022-3727/31/2/006

    Article  Google Scholar 

  59. Choi JH, Lee J (2001) Dynamic force balance model for metal transfer analysis in arc welding. J Phys D: Appl Phys 34:2658–2664. https://doi.org/10.1088/0022-3727/34/17/313

    Article  Google Scholar 

  60. Tanaka M, Tashiro S, Tsujimura Y (2013) Visualizations and predictions of welding arcs. Trans JWRI 41(2):1–5. https://doi.org/10.18910/24862

    Article  Google Scholar 

  61. Ding XP, Li H, Yang LJ, Gao Y (2013) Simulation of metal transfer in GMAW based on FLUENT. Acta Metallrugica Sinica 26:265–270. https://doi.org/10.1007/s40195-012-0175-4

    Article  Google Scholar 

  62. Zielinska S, Musiol K, Dzierzega K, Pellerin S, Valensi F, de Izarra C, Briand F (2007) Investigations of GMAW plasma by optical emission spectroscopy. Plasma Sources Sci Technol 16:832. https://doi.org/10.1088/0963-0252/16/4/019

    Article  Google Scholar 

  63. Lowke JJ, Murphy AB, Tanaka M (2010) Metal vapour in mig arcs can cause (1) minimain central arc temperatures and (2) increased arc voltages. Weld World 54:R292–R297. https://doi.org/10.1007/BF03266742

    Article  Google Scholar 

  64. Murphy AB (2013) Influence of metal vapour on arc temperatures in gas-metal arcwelding: convection versus radiation. J Phys D: Appl Phys 46:224004. https://doi.org/10.1088/0022-3727/46/22/224004

    Article  Google Scholar 

  65. Boselli M, Colombo V, Ghedini E, Gherardi M, Sanibondi P (2012) Dynamic analysis of droplet transfer ingas-metal arc welding: modelling and experiments. Plasma Sources Sci Technol 21:055015. https://doi.org/10.1088/0963-0252/21/5/055015

    Article  Google Scholar 

  66. Boselli M, Colombo V, Ghedini E, Gherardi M, Sanibondi P (2013) Two-temperature modelling and optical emission spectroscopy of a constant current plasma arc welding process. J Phys D: Appl Phys 46:224009. https://doi.org/10.1088/0022-3727/46/22/224009

    Article  Google Scholar 

  67. Tashiro S, Murphy AB, Tanaka M (2018) Numerical simulation of fume formation process in GMA welding. Weld World Le Soudage Dans Le Monde 62:1331–1339. https://doi.org/10.1007/s40194-018-0656-9

    Article  Google Scholar 

  68. Tashiro S, Murphy AB, Matsui S, Tanaka M (2013) Numerical analysis of the influence of particle charging on the fume formation process in arc welding. J Phys D: Appl Phys 46:345–351. https://doi.org/10.1088/0022-3727/46/22/224007

    Article  Google Scholar 

  69. Tashiro S, Zeniya T, Murphy AB, Tanaka M (2013) Visualization of fume formation process in arc welding with numerical simulation. Surf Coat Technol 228:S301–S305. https://doi.org/10.1016/j.surfcoat.2012.05.114

    Article  Google Scholar 

  70. Ogino Y, Hirata Y, Murphy AB (2016) Numerical simulation of GMAW process using Ar and an Ar–CO2 gas mixture. Weld World 60:345–353. https://doi.org/10.1007/s40194-015-0287-3

    Article  Google Scholar 

  71. Ogino Y, Hirata Y, Asai S (2017) Numerical simulation of metal transfer in pulsed-MIG welding. Weld World 61:1289–1296. https://doi.org/10.1007/s40194-017-0492-3

    Article  Google Scholar 

  72. Hu J, Tsai HL (2007) Heat and mass transfer in gas metal arc welding. Part: l The arc. Int J Heat Mass Trans 50:833–846. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.025

    Article  MATH  Google Scholar 

  73. Hu J, Tsai HL (2007) Heat and mass transfer in gas metal arc welding. Part II: The metal. Int J Heat Mass Transf 50:808–820. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.026

    Article  Google Scholar 

  74. Rao ZH, Hu J, Liao SM, Tsai HL (2010) Modeling of the transport phenomena in GMAW using argon-helium mixtures. Part l-The arc. Int J Heat Mass Transf 53:5707–5721. https://doi.org/10.1016/j.ijheatmasstransfer.2010.08.010

    Article  MATH  Google Scholar 

  75. Murphy AB (2011) A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding. J Phys D: Appl Phys 44:194009. https://doi.org/10.1088/0022-3727/44/19/194009

    Article  Google Scholar 

  76. Schnick M, Fuessel U, Hertel M, Haessler M, Spille-Kohoff A, Murphy AB (2010) Modelling of gas-metal arc welding taking into account metal vapour. J Phys D: Appl Phys 43:434008. https://doi.org/10.1088/0022-3727/43/43/434008

    Article  Google Scholar 

  77. Schnick M, Fussel U, Hertel M, Spille-Kohoff A, Murphy AB (2011) Numerical investigations of the influence of metal vapour in GMA welding. Weld Worid 55:114–120. https://doi.org/10.1007/BF03321549

    Article  Google Scholar 

  78. Hertel M, Spille-Kohoff A, Fuissel U, Schnick M (2013) Numerical simulation of droplet detachment in pulsed gas-metal arc welding including the influence of metal vapour. J Phys D Appl Phys 46:4003. https://doi.org/10.1088/0022-3727/46/22/224003

    Article  Google Scholar 

  79. Ogino Y, Hirata Y, Asai S (2020) Discussion of the effect of shielding gas and conductivity of vapor core on metal transfer phenomena in gas metal arc welding by numerical simulation. Plasma Chem Plasma Process 40:1109–1126. https://doi.org/10.1007/s11090-020-10102-1

    Article  Google Scholar 

Download references

Funding

The present research work was financially supported by the Shenyang Collaborative Innovation Center Project for Multiple Energy Fields Composite Processing of Special Materials (Grant No. JG210027) and Shenyang Key Technology Special Project of “The Open Competition Mechanism to Select the Best Solution” (Grant No. 2022210101000827, 2022–0-43–048).

Author information

Authors and Affiliations

Authors

Contributions

Junyan Miao: conceptualization, methodology, writing—original draft. Bowen Ren: conceptualization, collecting documents, writing—original draft. Zhihai Dong: conceptualization, collecting documents, writing—original draft. Yiwen Li: collecting documents, writing—original draft. Wenfeng Zou: collecting documents, supervision. Chenhe Chang: writing—review & editing, resources. Yunlong Chang: project administration, supervision.

Corresponding author

Correspondence to Yunlong Chang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors agree to participate.

Consent for publication

All authors agree to publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, J., Li, Y., Ren, B. et al. Current status of research on numerical simulation of droplet transfer in CO2 gas–shielded welding. Int J Adv Manuf Technol 128, 1–15 (2023). https://doi.org/10.1007/s00170-023-11870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11870-8

Keywords

Navigation