Skip to main content
Log in

Numerical analysis of the transition behavior and physical field of ultrasonic-assisted MIG welding droplet

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Based on FLUENT software, the VOF model was selected to numerically simulate the transfer behavior of ultrasonic-assisted MIG welding droplet under the effect of gravity, surface tension, electromagnetic force and plasma flow force. The influence of ultrasonic vibration on the necking radius of the plasma flow transfer of conventional MIG welding droplets is analyzed, and the effects of ultrasonic vibration transmission and radiation on the internal pressure, vector and the entire calculated flow field of the droplet are explored. The results of comparison with conventional MIG welding show that ultrasonic vibration causes rapid necking of droplet, the necking radius decreases and the plasma flow force increases, which promotes the transfer process of droplet; the internal dynamic pressure of the droplet increases and the absolute pressure in the flow field decreases. To verify the accuracy of the simulation results, welding tests were carried out, and the droplet transfer process was filmed by high-speed camera equipment and the droplet size was obtained by image processing method, so as to effectively and quantitatively verify the accuracy of the simulation results. The comparison results show that the simulation results are in good agreement with the experimental results, and the mathematical model of the droplet transfer is reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu. Li Xiaoyan, L.W. Chuansong, Study on the progress of welding science and technology in China. J. Mech. Eng. 48(6), 19–31 (2012)

    Article  Google Scholar 

  2. J.S. Thomsen, Control of pulsed gas metal arc welding. Int. J. Model. Ident. Control 1(2), 115–125 (2006)

    Article  Google Scholar 

  3. J.F. Lancaster, The physics of welding. Phys. Technol. 15(2), 73 (1984)

    Article  ADS  Google Scholar 

  4. W.L. Dai, Effects of high-intensity ultrasonic-wave emission on the weldability of aluminum alloy 7075–T6. Mater. Lett. 57(16), 2447–2454 (2003)

    Article  Google Scholar 

  5. T. Watanabe, M. Shiroki, A. Yanagisawa et al., Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration. J. Mater. Process. Technol. 210(12), 1646–1651 (2010)

    Article  Google Scholar 

  6. T. Watanabe, S. Ookawara, S. Seki et al., The effect of ultrasonic vibration on the mechanical properties of austenitic stainless steel weld. Quart. J. Jpn. Weld. Soc. 21(2), 249–255 (2003)

    Article  Google Scholar 

  7. C.L. Fan, Y.Y. Fan, S.B. Lin, W.G. Liu, C.L. Yang, Ultrasonic wave assisted GMAW. Weld. J. 91(3), 91S-S99 (2012)

    Google Scholar 

  8. C.L. Fan, Y.Y. Fan, S.B. Lin, W.G. Liu, C.L. Yang, Research on short circuiting transfer pattern of ultrasonic assisted GMAW method. Sci. Technol. Weld. J. 17(3), 186–191 (2013)

    Article  Google Scholar 

  9. C.L. Fan, Y.Y. Fan, S.B. Lin, C.L. Yang, Arc characteristics of ultrasonic wave-assisted GMAW. Weld. J. 92(3), 375s-s380 (2013)

    Google Scholar 

  10. C.L. Fan, Y.Y. Fan, S.B. Lin, W.F. Xie, C.L. Yang, Process stability of ultrasonic-wave-assisted gas metal arc welding. Metall. Mater. Trans. A 48(10), 4615–4621 (2017)

    Article  Google Scholar 

  11. C.L. Fan, S.B. Lin, W.F. Xie, C.L. Yang, Experimental investigation on acoustic control droplet transfer in ultrasonic-wave-assisted gas metal arc welding. Metall. Mater. Trans. B 49(1), 274–281 (2018)

    Article  Google Scholar 

  12. C.L. Fan, S.B. Lin, W.F. Xie, C.L. Yang, Pulsed ultrasonic-wave-assisted GMAW of 7A52 aluminum alloy. Trans. China Weld. Inst. 95(7), 239S-S247 (2016)

    Google Scholar 

  13. C.L. Fan, Q.T. Yao, W.F. Xie et al., Drop transition behavior of ultrasonic-MAG hybrid welding. Weld. J. 38(11), 11–15 (2017). ((in chinense))

    Google Scholar 

  14. S.L. Ma, G.H. Ma, Y. Cui et al., Design of MIG-ultrasonic hybrid welding equipment. Hot Work. Technol. 043(019), 166–168 (2014). ((in chinense))

    Google Scholar 

  15. J.H. Choi, J.Y. Lee, C.D. Yoo, Simulation of dynamic behavior in a GMAW system. Weld. J. 80(10), 239–245 (2001)

    Google Scholar 

  16. A.D. Tipi, The study on the drop detachment for automatic pipeline GMAW system: short-circuit mode. Int. J. Adv. Manuf. Technol. 50, 149–161 (2010)

    Article  Google Scholar 

  17. J.H. Choi, J. Lee, C.D. Yoo, Dynamic force balance model for metal transfer analysis in arc welding. J. Phys. D Appl. Phys. 34, 2658–2664 (2001)

    Article  ADS  Google Scholar 

  18. A.Y. Park, S.R. Kim, M.A. Hammad et al., Modification of pinch instability theory for analysis of spray mode in GMAW. J. Phys. D Appl. Phys. 42, 1–6 (2009)

    Google Scholar 

  19. S. Li, M. Chen, C. Wu, Analytical model for dynamic process of metal transfer in pulsed GMAW. Trans. China Weld. Inst. 25(2), 47–51 (2004)

    Google Scholar 

  20. U. Ersoy, E. Kannatey-Asibu, S.J. Hu, Analytical modeling of metal transfer for GMAW in the globular mode. J. Manuf. Sci. Eng. Trans. ASME 130, 1–8 (2008)

    Article  Google Scholar 

  21. F. Wang, W.K. Hou, S.J. Hu, E. Kannatey-Asibu, W.W. Schultz, P.C. Wang, Modelling and analysis of metal transfer in gas metal arc welding. J. Phys. D 36, 1143–1152 (2003)

    Article  ADS  Google Scholar 

  22. T.P. Quinn, M. Szanto, I. Gilad, I. Shai, Coupled arc and droplet model of GMAW. Sci. Technol. Weld. Join 10, 113–119 (2005)

    Article  Google Scholar 

  23. J. Haidar, J.J. Lowke, Predictions of metal droplet formation in arc welding. J. Phys. D Appl. Phys. 29(12), 2951 (1996)

    Article  ADS  Google Scholar 

  24. H.G. Fan, R. Kovacevic, A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool. J. Phys. D Appl. Phys. 37(18), 2531 (2004)

    Article  ADS  Google Scholar 

  25. Li. Huan, D. Xueping, Y. Lijun, G. Ying, Dynamic simulation of GMAW welding droplet transition process based on FLUENT. Electr. Weld. Mach. 11, 54–58 (2012). ((in chinense))

    Google Scholar 

  26. J.C. Amson, Lorentz force in the molten tip of an arc electrode. Br. J. Appl. Phys. 16(8), 1169 (1965)

    Article  ADS  Google Scholar 

  27. J. Fu, B. Peng, J. Cao, Numerical simulation of material forming process. Int. J. Adv. Manuf. Technol. 2, 142–150 (2009)

    Google Scholar 

  28. Y.S. Kim, T.W. Eagar, Analysis of metal transfer in gas metal arc welding. Weld. J. New York 72, 269 (1993)

    Google Scholar 

  29. S.K. Choi, C.D. Yoo, Y.S. Kim, Weld. I 77(1), 28s (1998)

    ADS  Google Scholar 

  30. R. Qin, C. Duan, The principle and applications of Bernoulli equation. J. Phys. Conf. Ser. 916(1), 12–38 (2017)

    Google Scholar 

  31. F. Wang, W.K. Hou, S.J. Hu, E. Kannatey-Asibu, W.W. Schultz, P.C. Wang, Modeling and analysis of metal transfer in gas metal arc welding. J. Phys. D Appl. Phys. 36(9), 1143–1152 (2003)

    Article  ADS  Google Scholar 

  32. T. Kobata, A. Ooiwa, Method of evaluating frequency characteristics of pressure transducers using newly developed dynamic pressure generator. Sens. Actuators 79, 97–101 (2000)

    Article  Google Scholar 

  33. Xu. Yanling, Gu. Na Lv, S. Du Fang, W. Zhao, Z. Ye, S. Chen, Welding seam tracking in robotic gas metal arc welding. J. Mater. Process. Technol. 248, 18–30 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51665037); Key Laboratory of Lightweight and High Strength Structural Materials of Jiangxi Province (No. 20171BCD40003)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma Guohong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donghua, L., Lei, H., Juncai, L. et al. Numerical analysis of the transition behavior and physical field of ultrasonic-assisted MIG welding droplet. Appl. Phys. A 127, 143 (2021). https://doi.org/10.1007/s00339-020-04239-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04239-1

Keywords

Navigation