Skip to main content
Log in

A review on theories/methods to obtain surface topography and analysis of corresponding affecting factors in the milling process

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

A Correction to this article was published on 19 June 2023

This article has been updated

Abstract

As one of the most important material-removing technologies, milling is used commonly for recent several decades to remove materials from a blank to get the desired surface. There are several parameters representing the geometrical qualities of a surface including topography, roughness, and waviness. Also, the surface topography directly determines contacting zone between two fitting surfaces, which may influence the friction property and the lubricity and furthermore affect the serving life of the machined surface. Therefore, the study of surface topography becomes a necessary research topic. To meet the fast-growing demand for high-performance surfaces and to figure out the challenges in this research area, the history and state-of-the-art technology/theory of this area need to be summarized. Thus, this paper tries to present a comprehensive review of the study on surface topography in the milling process. First, the construction mechanism of surface topography is analyzed. Second, the existing predicting methods are concluded. Then, influencing factors on the surface topography are discussed. Finally, the study on surface topography of complex components is investigated from geometric analysis, experimental exploration, and influence factors. Systemic analysis of research on surface topography provides a basis for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

Change history

References

  1. M’Saoubi R, Axinte D, Soo SL et al (2015) High performance cutting of advanced aerospace alloys and composite materials[J]. CIRP Ann 64(2):557–580. https://doi.org/10.1016/j.cirp.2015.05.002

    Article  Google Scholar 

  2. Sun Y, Shi Z, Guo Q, Xu J (2022) A novel method to predict surface topography in robotic milling of directional plexiglas considering cutter dynamical displacement[J]. J Mater Process Technol 304:117545. https://doi.org/10.1016/j.jmatprotec.2022.117545

    Article  Google Scholar 

  3. Lu H, Zhu L, Yang Z, Yan B, Hao Y, Qin S (2021) Research on the generation mechanism and interference of surface texture in ultrasonic vibration assisted milling[J]. Int J Mech Sci 208:106681. https://doi.org/10.1016/j.ijmecsci.2021.106681

    Article  Google Scholar 

  4. Jiang Y, Qiang GUO (2020) Simulation of multi-axis grinding considering runout based on envelope theory[J]. Chin J Aeronaut 33(12):3526–3534. https://doi.org/10.1016/j.cja.2020.02.028

    Article  Google Scholar 

  5. Zheng L, Chen W, Pozzi M, Teng X, Huo D (2019) Modulation of surface wettability by vibration assisted milling[J]. Precis Eng 55:179–188. https://doi.org/10.1016/j.precisioneng.2018.09.006

    Article  Google Scholar 

  6. Chen W, Zheng L, Xie W, Yang K, Huo D (2019) Modelling and experimental investigation on textured surface generation in vibration-assisted micro-milling[J]. J Mater Process Technol 266:339–350. https://doi.org/10.1016/j.jmatprotec.2018.11.011

    Article  Google Scholar 

  7. Song W, Liu Z, Yao G, Khan AM, Cai Y (2022) Effect of workpiece work hardening on machined surface topography generated in two-step milling process[J]. J Manuf Process 77:348–360. https://doi.org/10.1016/j.jmapro.2022.03.039

    Article  Google Scholar 

  8. Zhuo Y, Han Z, An D, Jin H (2021) Surface topography prediction in peripheral milling of thin-walled parts considering cutting vibration and material removal effect[J]. Int J Mech Sci 211:106797. https://doi.org/10.1016/j.ijmecsci.2021.106797

    Article  Google Scholar 

  9. China Machine Tool & Tool Builders’ Association (2019) Analysis of economic operation of Chinese machine tool industry in. World Manuf Eng Market 2020:26–33

    Google Scholar 

  10. Jithin S, Joshi SS (2021) Surface topography generation and simulation in electrical discharge texturing: a review[J]. J Mater Process Technol 298:117297. https://doi.org/10.1016/j.jmatprotec.2021.117297

    Article  Google Scholar 

  11. Peta K, Bartkowiak T, Galek P, Mendak M (2021) Contact angle analysis of surface topographies created by electric discharge machining[J]. Tribol Int 163:107139. https://doi.org/10.1016/j.triboint.2021.107139

    Article  Google Scholar 

  12. Zhang SJ, To S, Zhang GQ, Zhu ZW (2015) A review of machine-tool vibration and its influence upon surface generation in ultra-precision machining[J]. Int J Mach Tools Manuf 91:34–42. https://doi.org/10.1016/j.ijmachtools.2015.01.005

    Article  Google Scholar 

  13. Zhang SJ, To S, Wang SJ, Zhu ZW (2015) A review of surface roughness generation in ultra-precision machining[J]. Int J Mach Tools Manuf 91:76–95. https://doi.org/10.1016/j.ijmachtools.2015.02.001

    Article  Google Scholar 

  14. Liang X, Liu Z, Wang B (2019) State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: A review[J]. Measurement 132:150–181. https://doi.org/10.1016/j.measurement.2018.09.045

    Article  Google Scholar 

  15. Mali RA, Gupta TVK, Ramkumar J (2021) A comprehensive review of free-form surface milling–advances over a decade[J]. J Manuf Process 62:132–167. https://doi.org/10.1016/j.jmapro.2020.12.014

    Article  Google Scholar 

  16. Zhu L, Liu C (2020) Recent progress of chatter prediction, detection and suppression in milling[J]. Mech Syst Signal Process 143:106840. https://doi.org/10.1016/j.ymssp.2020.106840

    Article  Google Scholar 

  17. Yan B, Hao Y, Zhu L et al (2022) Towards high milling accuracy of turbine blades: a review[J]. Mech Syst Signal Process 170:108727. https://doi.org/10.1016/j.ymssp.2021.108727

    Article  Google Scholar 

  18. Wang W, Guo Q, Yang Z et al (2023) A state-of-the-art review on robotic milling of complex parts with high efficiency and precision[J]. Robot Comput-Integr Manuf 79:102436. https://doi.org/10.1016/j.rcim.2022.102436

    Article  Google Scholar 

  19. Xu J, Xu L, Geng Z, Sun Y, Tang K (2020) 3D surface topography simulation and experiments for ball-end NC milling considering dynamic feedrate[J]. CIRP J Manuf Sci Technol 31:210–223. https://doi.org/10.1016/j.cirpj.2020.05.011

    Article  Google Scholar 

  20. Groß K, Eifler M, Klauer K, Huttenlochner K, Kirsch B, Ziegler C, Seewig J, Christian AJ (2021) Determination of the surface topography of ball end micro milled material measures[J]. Eng Sci Technol Int J 24(2):543–555. https://doi.org/10.1016/j.jestch.2020.08.005

    Article  Google Scholar 

  21. Montgomery D, Altintas Y (1991) Mechanism of cutting force and surface generation in dynamic milling[J]. J Manuf Sci Eng 113(2):160–168. https://doi.org/10.1115/1.2899673

    Article  Google Scholar 

  22. Elbestawi MA, Ismail F, Yuen KM (1994) Surface topography characterization in finish milling[J]. Int J Mach Tools Manuf 34(2):245–255. https://doi.org/10.1016/0890-6955(94)90104-X

    Article  Google Scholar 

  23. Chiou CH, Hong MS, Ehmann KF (2004) Simulation of machined surface topography in end-milling processes using a shear-plane-based cutting force model[J]. Proc Inst Mech Eng Part B: J Eng Manuf 218(12):1767–1793. https://doi.org/10.1177/2F095440540421801211

    Article  Google Scholar 

  24. Buj-Corral I, Vivancos-Calvet J, González-Rojas H (2011) Influence of feed, eccentricity and helix angle on topography obtained in side milling processes[J]. Int J Mach Tools Manuf 51(12):889–897. https://doi.org/10.1016/j.ijmachtools.2011.08.001

    Article  Google Scholar 

  25. Mizugaki Y, Hao M, Kikkawa K, Nakagawa T (2001) Geometric generating mechanism of machined surface by ball-nosed end milling[J]. CIRP Ann 50(1):69–72. https://doi.org/10.1016/S0007-8506(07)62073-3

    Article  Google Scholar 

  26. Mizugaki Y, Kikkawa K, Terai H, Hao M, Sata T (2003) Theoretical estimation of machined surface profile based on cutting edge movement and tool orientation in ball-nosed end milling[J]. CIRP Ann 52(1):49–52. https://doi.org/10.1016/S0007-8506(07)60528-9

    Article  Google Scholar 

  27. Chen JS, Huang YK, Chen MS (2005) A study of the surface scallop generating mechanism in the ball-end milling process[J]. Int J Mach Tools Manuf 45(9):1077–1084. https://doi.org/10.1016/j.ijmachtools.2004.11.019

    Article  Google Scholar 

  28. Luo ZC, Peng FY, Chen XB, Wei LF (2009) Prediction and simulation of surface topomorphy in ultraprecision milling for optical freeform surface[J]. J Vacuum Sci Technol B: Microelectron Nanometer Struct Process Measure Phenomena 27(3):1230–1237. https://doi.org/10.1116/1.3081984

    Article  Google Scholar 

  29. Sekine T, Obikawa T, Hoshino M (2012) Establishing a novel model for 5-axis milling with a filleted end mill[J]. J Adv Mech Des Syst Manuf 6(2):296–309. https://doi.org/10.1299/jamdsm.6.296

    Article  Google Scholar 

  30. Arizmendi M, Fernández J, Gil A, Veiga F (2009) Effect of tool setting error on the topography of surfaces machined by peripheral milling[J]. Int J Mach Tools Manuf 49(1):36–52. https://doi.org/10.1016/j.ijmachtools.2008.08.004

    Article  Google Scholar 

  31. Kline WA, Devor RE, Shareef IA (1982) The prediction of surface accuracy in end milling[J]. Trans Asme J Eng Ind 104(3):272–278. https://doi.org/10.1115/1.3185830

    Article  Google Scholar 

  32. Denkena B, Köhler J, Sellmeier V, Mörke T (2011) Topography prediction of resilient parts after flank milling with chamfered tools[J]. Prod Eng Res Devel 5(3):273–281. https://doi.org/10.1007/s11740-011-0305-2

    Article  Google Scholar 

  33. Gao T, Zhang W, Qiu K, Wan M (2006) Numerical simulation of machined surface topography and roughness in milling process[J]. J Manuf Sci Eng 128(1):96–103. https://doi.org/10.1115/1.2123047

    Article  Google Scholar 

  34. Quinsat Y, Sabourin L, Lartigue C (2008) Surface topography in ball end milling process: description of a 3D surface roughness parameter[J]. J Mater Process Technol 195(1–3):135–143. https://doi.org/10.1016/j.jmatprotec.2007.04.129

    Article  Google Scholar 

  35. Ning J, Zhu L (2019) Parametric design and surface topography analysis of turbine blade processing by turn-milling based on CAM[J]. Int J Adv Manuf Technol 104(9):3977–3990. https://doi.org/10.1007/s00170-019-04037-x

    Article  Google Scholar 

  36. Arizmendi M, Fernández J, Gil A, Veiga F (2010) Identification of tool parallel axis offset through the analysis of the topography of surfaces machined by peripheral milling[J]. Int J Mach Tools Manuf 50(12):1097–1114. https://doi.org/10.1016/j.ijmachtools.2010.07.006

    Article  Google Scholar 

  37. Arizmendi M, Fernández J, Gil A, Veiga F (2010) Model for the prediction of heterogeneity bands in the topography of surfaces machined by peripheral milling considering tool runout[J]. Int J Mach Tools Manuf 50(1):51–64. https://doi.org/10.1016/j.ijmachtools.2009.09.007

    Article  Google Scholar 

  38. Quintana G, Deciurana J, Ribatallada J (2010) Surface roughness generation and material removal rate in ball end milling operations[J]. Adv Manuf Process 25(6):386–398. https://doi.org/10.1080/15394450902996601

    Article  Google Scholar 

  39. Lin AQ, Zheng ML, Fan CG, Yang L (2011) Surface morphology simulation of high speed milled of face milling cutters[C]//Advanced Materials Research. Trans Tech Publications Ltd 305:225–229. https://doi.org/10.4028/www.scientific.net/AMR.305.225

    Article  Google Scholar 

  40. Liping W, Shuyi GE, Hao SI, Liwen GU (2020) Elliptical model for surface topography prediction in five-axis flank milling[J]. Chin J Aeronaut 33(4):1361–1374. https://doi.org/10.1016/j.cja.2019.06.007

    Article  Google Scholar 

  41. Wang L, Ge S, Si H, Yuan X, Duan F (2020) Roughness control method for five-axis flank milling based on the analysis of surface topography[J]. Int J Mech Sci 169:105337. https://doi.org/10.1016/j.ijmecsci.2019.105337

    Article  Google Scholar 

  42. Peigne G, Paris H, Brissaud D (2003) A model of milled surface generation for time domain simulation of high-speed cutting[J]. Proc Inst Mech Eng Part B: J Eng Manuf 217(7):919–930. https://doi.org/10.1243/09544050360686798

    Article  Google Scholar 

  43. Arizmendi M, Campa FJ, Fernández J, Deacalle LL, Gil A, Bilbao E, Veiga F, Lamikiz A (2009) Model for surface topography prediction in peripheral milling considering tool vibration[J]. CIRP Annals 58(1):93–96. https://doi.org/10.1016/j.cirp.2009.03.084

    Article  Google Scholar 

  44. Yuan L, Zeng S, Chen Z (2015) Simultaneous prediction of surface topography and surface location error in milling[J]. Proc Inst Mech Eng C J Mech Eng Sci 229(10):1805–1829. https://doi.org/10.1177/0954406214547401

    Article  Google Scholar 

  45. Liu C, Gao L, Wang G, Xu W, Jiang X, Yang T (2020) Online reconstruction of surface topography along the entire cutting path in peripheral milling[J]. Int J Mech Sci 185:105885. https://doi.org/10.1016/j.ijmecsci.2020.105885

    Article  Google Scholar 

  46. Zhang X, Pan X, Wang G (2019) Influence factors of surface topography in micro-side milling[J]. Int J Adv Manuf Technol 105(12):5239–5245. https://doi.org/10.1007/s00170-019-04527-y

    Article  Google Scholar 

  47. Denkena B, Krüger M, Bachrathy D, Stepan G (2012) Model based reconstruction of milled surface topography from measured cutting forces[J]. Int J Mach Tools Manuf 54:25–33. https://doi.org/10.1016/j.ijmachtools.2011.12.007

    Article  Google Scholar 

  48. Liu C, He Y, Wang Y, Li Y, Wang S, Wang L, Wang Y (2019) An investigation of surface topography and workpiece temperature in whirling milling machining[J]. Int J Mech Sci 164:105182. https://doi.org/10.1016/j.ijmecsci.2019.105182

    Article  Google Scholar 

  49. Urbikain G, de Lacalle LNL (2018) Modelling of surface roughness in inclined milling operations with circle-segment end mills[J]. Simul Model Pract Theory 84:161–176. https://doi.org/10.1016/j.simpat.2018.02.003

    Article  Google Scholar 

  50. Nespor D, Denkena B, Grove T, Pape O (2016) Surface topography after re-contouring of welded Ti-6Al-4V parts by means of 5-axis ball nose end milling[J]. Int J Adv Manuf Technol 85(5):1585–1602. https://doi.org/10.1007/s00170-015-7885-5

    Article  Google Scholar 

  51. Liu N, Loftus M, Whitten A (2005) Surface finish visualisation in high speed, ball nose milling applications[J]. Int J Mach Tools Manuf 45(10):1152–1161. https://doi.org/10.1016/j.ijmachtools.2004.12.007

    Article  Google Scholar 

  52. Lavernhe S, Quinsat Y, Lartigue C, Brown C (2014) Realistic simulation of surface defects in five-axis milling using the measured geometry of the tool[J]. Int J Adv Manuf Technol 74(1):393–401. https://doi.org/10.1007/s00170-014-5689-7

    Article  Google Scholar 

  53. Xu J, Zhang H, Sun Y (2018) Swept surface-based approach to simulating surface topography in ball-end CNC milling[J]. Int J Adv Manuf Technol 98(1):107–118. https://doi.org/10.1007/s00170-017-0322-1

    Article  Google Scholar 

  54. Quinsat Y, Lavernhe S, Lartigue C (2011) Characterization of 3D surface topography in 5-axis milling[J]. Wear 271(3–4):590–595. https://doi.org/10.1016/j.wear.2010.05.014

    Article  Google Scholar 

  55. Arizmendi M, Fernández J, de Lacalle LNL, Lamikiz A, Gil A, Sánchez JA, Campa FJ, Veiga F (2008) Model development for the prediction of surface topography generated by ball-end mills taking into account the tool parallel axis offset. Experimental validation[J]. CIRP Annals 57(1):101–104. https://doi.org/10.1016/j.cirp.2008.03.045

    Article  Google Scholar 

  56. Torta M, Albertelli P, Monno M (2020) Surface morphology prediction model for milling operations[J]. Int J Adv Manuf Technol 106(7):3189–3201. https://doi.org/10.1007/s00170-019-04687-x

    Article  Google Scholar 

  57. Buj-Corral I, Vivancos-Calvet J, Dominguez-Fernandez A (2012) Surface topography in ball-end milling processes as a function of feed per tooth and radial depth of cut[J]. Int J Mach Tools Manuf 53(1):151–159. https://doi.org/10.1016/j.ijmachtools.2011.10.006

    Article  Google Scholar 

  58. Bo L, Yanlong C, Wenhua C, Jun P (2017) Geometry simulation and evaluation of the surface topography in five-axis ball-end milling[J]. Int J Adv Manuf Technol 93(5):1651–1667. https://doi.org/10.1007/s00170-017-0505-9

    Article  Google Scholar 

  59. Anderson RO (1978) Detecting and eliminating collisions in NC machining[J]. Comput Aided Des 10(4):231–237. https://doi.org/10.1016/0010-4485(78)90058-1

    Article  Google Scholar 

  60. Chen HQ, Wang QH (2019) Modelling and simulation of surface topography machined by peripheral milling considering tool radial runout and axial drift[J]. Proc Inst Mech Eng Part B: J Eng Manuf 233(12):2227–2240. https://doi.org/10.1177/0954405419838384

    Article  Google Scholar 

  61. Li Z, Liu Q (2013) Surface topography and roughness in hole-making by helical milling[J]. Int J Adv Manuf Technol 66(9):1415–1425. https://doi.org/10.1007/s00170-012-4419-2

    Article  Google Scholar 

  62. Zhou Y, Tian Y, Jing X, Wang F, Liu Y (2018) Surface topography modeling and roughness extraction in helical milling operation[J]. Int J Adv Manuf Technol 95(9):4561–4571. https://doi.org/10.1007/s00170-017-1516-2

    Article  Google Scholar 

  63. Denkena B, Böß V, Nespor D, Gilge P (2015) Prediction of the 3D surface topography after ball end milling and its influence on aerodynamics[J]. Procedia CIRP 31:221–227. https://doi.org/10.1016/j.procir.2015.03.049

    Article  Google Scholar 

  64. Zhang Q, Zhang S, Shi W (2018) Modeling of surface topography based on relationship between feed per tooth and radial depth of cut in ball-end milling of AISI H13 steel[J]. Int J Adv Manuf Technol 95(9):4199–4209. https://doi.org/10.1007/s00170-017-1502-8

    Article  Google Scholar 

  65. Gao H, Yue C, Liu X, Nan Y (2019) Simulation of surface topography considering cut-in impact and tool flank wear[J]. Appl Sci 9(4):732. https://doi.org/10.3390/app9040732

    Article  Google Scholar 

  66. Wu S, Li Z, Liu X, Liu Z (2020) Effects of surface splicing characteristics of the hardened steel mold on the machined surface topography[J]. Proc Inst Mech Eng Part B: J Eng Manuf 234(1–2):270–284. https://doi.org/10.1177/0954405419840560

    Article  Google Scholar 

  67. Chen W, Xie W, Huo D, Yang K (2018) A novel 3D surface generation model for micro milling based on homogeneous matrix transformation and dynamic regenerative effect[J]. Int J Mech Sci 144:146–157. https://doi.org/10.1016/j.ijmecsci.2018.05.050

    Article  Google Scholar 

  68. Lu X, Hu X, Jia Z, Liu M, Gao S, Qu C, Liang SY (2018) Model for the prediction of 3D surface topography and surface roughness in micro-milling Inconel 718[J]. Int J Adv Manuf Technol 94(5):2043–2056. https://doi.org/10.1007/s00170-017-1001-y

    Article  Google Scholar 

  69. Yang L, Wu S, Liu X, Liu Z, Zhu M, Li Z (2018) The effect of characteristics of free-form surface on the machined surface topography in milling of panel mold[J]. Int J Adv Manuf Technol 98(1):151–163. https://doi.org/10.1007/s00170-017-0698-y

    Article  Google Scholar 

  70. Biondani FG, Bissacco G (2019) Effect of cutting edge micro geometry on surface generation in ball end milling[J]. CIRP Ann 68(1):571–574. https://doi.org/10.1016/j.cirp.2019.04.017

    Article  Google Scholar 

  71. Shujuan L, Dong Y, Li Y, Li P, Yang Z, Landers RG (2019) Geometrical simulation and analysis of ball-end milling surface topography[J]. Int J Adv Manuf Technol 102(5):1885–1900. https://doi.org/10.1007/s00170-018-03217-5

    Article  Google Scholar 

  72. Zhang X, Zhang W, Zhang J, Pang B, Zhao W (2019) Systematic study of the prediction methods for machined surface topography and form error during milling process with flat-end cutter[J]. Proc Inst Mech Eng Part B: J Eng Manuf 233(1):226–242. https://doi.org/10.1177/0954405417740924

    Article  Google Scholar 

  73. Peng F, Wu J, Fang Z, Yuan S, Yan R, Bai Q (2013) Modeling and controlling of surface micro-topography feature in micro-ball-end milling[J]. Int J Adv Manuf Technol 67(9):2657–2670. https://doi.org/10.1007/s00170-012-4681-3

    Article  Google Scholar 

  74. Chen HQ, Wang QH (2018) Modeling and simulation of the surface topography in ball-end milling based on biharmonic spline interpolation[J]. Int J Adv Manuf Technol 99(9):2451–2466. https://doi.org/10.1007/s00170-018-2615-4

    Article  Google Scholar 

  75. Wang Z, Wang B, Yuan J (2019) Modeling of surface topography based on cutting vibration in ball-end milling of thin-walled parts[J]. Int J Adv Manuf Technol 101(5):1837–1854. https://doi.org/10.1007/s00170-018-3095-2

    Article  Google Scholar 

  76. Wang W, Li Q, Jiang Y (2020) A novel 3D surface topography prediction algorithm for complex ruled surface milling and partition process optimization[J]. Int J Adv Manuf Technol 107(9):3817–3831. https://doi.org/10.1007/s00170-020-05263-4

    Article  Google Scholar 

  77. Zhang J, Zhang S, Jiang D, Wang J, Lu S (2020) Surface topography model with considering corner radius and diameter of ball-nose end miller[J]. Int J Adv Manuf Technol 106(9):3975–3984. https://doi.org/10.1007/s00170-019-04897-3

    Article  Google Scholar 

  78. Chen W, Lu L, Xie W, Huo D, Yang K (2018) A new surface topography-based method to quantifyaxial error of high speed milling cutters[J]. J Manuf Sci Eng 140(11). https://doi.org/10.1115/1.4041180

  79. Chen W, Sun Y, Huo D, Teng X (2019) Modelling of the influence of tool runout on surface generation in micro milling[J]. Chin J Mech Eng 32(1):1–9. https://doi.org/10.1186/s10033-019-0318-x

    Article  Google Scholar 

  80. Arizmendi M, Jiménez A. Modelling and analysis of surface topography generated in face milling operations[J]. International Journal of Mechanical Sciences, 2019, 163: 105061. https://doi.org/10.1016/j.ijmecsci.2019.105061.

  81. Zhu L, Li H, Wang W (2013) Research on rotary surface topography by orthogonal turn-milling[J]. Int J Adv Manuf Technol 69(9):2279–2292. https://doi.org/10.1007/s00170-013-5202-8

    Article  Google Scholar 

  82. Zhang C, Guo S, Zhang H, Zhou L (2013) Modeling and predicting for surface topography considering tool wear in milling process[J]. The International Journal of Advanced Manufacturing Technology 68(9):2849–2860. https://doi.org/10.1007/s00170-013-4989-7

    Article  Google Scholar 

  83. Zhang C, Zhang H, Li Y, Zhou L (2015) Modeling and on-line simulation of surface topography considering tool wear in multi-axis milling process[J]. Int J Adv Manuf Technol 77(1):735–749. https://doi.org/10.1007/s00170-014-6485-0

    Article  Google Scholar 

  84. Simon V (2015) Micro surface topography of face-milled hypoid gears. Proceedings of the 14th IFToMM World Congress 185–93. https://doi.org/10.6567/IFToMM.14TH.WC.OS6.008

  85. Wang SJ, To S, Chen X, Chen XD (2015) An investigation on surface finishing in ultra-precision raster milling of aluminum alloy 6061[J]. Proc Inst Mech Eng Part B: J Eng Manuf 229(8):1289–1301. https://doi.org/10.1177/0954405414535588

    Article  Google Scholar 

  86. Prat D, Fromentin G, Poulachon G, Duc, E. Modeling and analysis of five-axis milling configurations and titanium alloy surface topography[J]. Journal of Manufacturing Science and Engineering, 2016, 138(6). https://doi.org/10.1115/1.4032083.

  87. Lotfi S, Wassila B, Gilles D (2018) Cutter workpiece engagement region and surface topography prediction in five-axis ball-end milling[J]. Mach Sci Technol 22(2):181–202. https://doi.org/10.1080/10910344.2017.1337131

    Article  Google Scholar 

  88. Wang M, Du S, Xi L (2015) Predicting machined surface topography based on high definition metrology[J]. IFAC-PapersOnLine 48(3):1013–1017. https://doi.org/10.1016/j.ifacol.2015.06.216

    Article  Google Scholar 

  89. Taguchi G (1990) Introduction to quality engineering, Asian Productivity Organization, Tokyo. https://doi.org/10.1142/9789812778697_0001

  90. Tarng W (1998) Design optimization of cutting parameters for turning operations based on the Taguchi method[J]. J Mater Process Technol. https://doi.org/10.1016/S0924-0136(98)00079-X

    Article  Google Scholar 

  91. Waikar RA, Guo YB (2008) A comprehensive characterization of 3D surface topography induced by hard turning versus grinding[J]. J Mater Process Technol 197(1–3):189–199. https://doi.org/10.1016/j.jmatprotec.2007.05.054

    Article  Google Scholar 

  92. Zhang S, Guo YB (2009) Taguchi method based process space for optimal surface topography by finish hard milling[J]. J Manuf Sci Eng 131(5):051003. https://doi.org/10.1115/1.3207740

    Article  Google Scholar 

  93. Yang D, Liu Z (2015) Surface topography analysis and cutting parameters optimization for peripheral milling titanium alloy Ti–6Al–4V[J]. Int J Refract Metal Hard Mater 51:192–200. https://doi.org/10.1016/j.ijrmhm.2015.04.001

    Article  Google Scholar 

  94. Zhao K, Hockauf R, Liu Z, Zhao W, Wang X, Wang D (2018) Kinematic and stochastic surface topography of workpiece made of Al7075 in flank milling[J]. Int J Adv Manuf Technol 96(5):2735–2745. https://doi.org/10.1007/s00170-018-1709-3

    Article  Google Scholar 

  95. Toh CK (2003) Surface topography analysis when high-speed rough milling hardened steel[J]. Mater Manuf Processes 18(6):849–862. https://doi.org/10.1081/AMP-120025074

    Article  Google Scholar 

  96. Toh CK (2004) Surface topography analysis in high speed finish milling inclined hardened steel[J]. Precis Eng 28(4):386–398. https://doi.org/10.1016/j.precisioneng.2004.01.001

    Article  Google Scholar 

  97. Wang T, Xie L, Wang X, Shang TY (2015) 2D and 3D milled surface roughness of high volume fraction SiCp/Al composites[J]. Def Technol 11(2):104–109. https://doi.org/10.1016/j.dt.2015.01.001

    Article  Google Scholar 

  98. Wang Z, Yuan J, Yin Z, Hu X (2016) Surface topography and roughness of high-speed milled AlMn1Cu[J]. Chin J Mech Eng 29(6):1200–1207. https://doi.org/10.3901/CJME.2016.0823.097

    Article  Google Scholar 

  99. Klauer K, Eifler M, Kirsch B, Seewig J, Aurich JC (2020) Ball end micro milling of areal material measures: influence of the tilt angle on the resulting surface topography[J]. Prod Eng Res Devel 14(2):239–252. https://doi.org/10.1007/s11740-019-00943-x

    Article  Google Scholar 

  100. Daymi A, Boujelbene M, Ben Amara A, Bayraktar E, Katundi D (2011) Surface integrity in high speed endmilling of titanium alloy Ti–6Al–4V[J]. Mater Sci Technol 27(1):387–394. https://doi.org/10.1179/026708310X12738371692932

    Article  Google Scholar 

  101. Zhang P, Wang B, Liang Y, Jackson MJ (2011) Experimental study on the surface roughness of micromilled Elgiloy™[J]. Proc Inst Mech Eng, Part B: J Eng Manuf 225(11):2138–2143. https://doi.org/10.1177/0954405411413864

    Article  Google Scholar 

  102. Zhang X, Yu T, Zhao J (2020) Surface generation modeling of micro milling process with stochastic tool wear[J]. Precis Eng 61:170–181. https://doi.org/10.1016/j.precisioneng.2019.10.015

    Article  Google Scholar 

  103. Zhang X, Yu T, Xu P et al (2022) In-process stochastic tool wear identification and its application to the improved cutting force modeling of micro milling[J]. Mech Syst Signal Process 164:108233-. https://doi.org/10.1016/j.ymssp.2021.108233

  104. Li W, Guo YB, Barkey ME et al (2014) Effect Tool Wear During End Milling on the Surface Integrity and Fatigue Life of Inconel 718[J]. Procedia CIRP 14:546–551. https://doi.org/10.1016/j.procir.2014.03.056

    Article  Google Scholar 

  105. Liu G, Zou B, Huang C et al (2016) Tool damage and its effect on the machined surface roughness in high-speed face milling the 17–4PH stainless steel. Int J Adv Manuf Technol 83:257–264. https://doi.org/10.1007/s00170-015-7564-6

    Article  Google Scholar 

  106. Dong Z, Zhang S, Xiong Z et al (2018) A generalized dynamic model for spindle vibration influencing surface topography in different ultra-precision machining processes. Int J Adv Manuf Technol 96:2471–2478. https://doi.org/10.1007/s00170-018-1814-3

    Article  Google Scholar 

  107. Yan B, Zhu L, Liu C (2020) Prediction model of peripheral milling surface geometry considering cutting force and vibration[J]. Int J Adv Manuf Technol 110(5):1429–1443. https://doi.org/10.1007/s00170-020-05930-6

    Article  Google Scholar 

  108. Sun Y, Jiang S (2018) Predictive modeling of chatter stability considering force-induced deformation effect in milling thin-walled parts[J]. Int J Mach Tools Manuf 135:S0890695518304425-. https://doi.org/10.1016/j.ijmachtools.2018.08.003

  109. Qin S, Zhu L, Wiercigroch M et al (2022) Material removal and surface generation in longitudinal-torsional ultrasonic assisted milling[J]. Int J Mech Sci 227:107375. https://doi.org/10.1016/j.ijmecsci.2022.107375

    Article  Google Scholar 

  110. Sun Y, Guo Q (2012) Analytical modeling and simulation of the envelope surface in five-axis flank milling with cutter runout[J]. J Manuf Sci Eng 134(2):21010–21010. https://doi.org/10.1115/1.4005802

    Article  Google Scholar 

  111. Wang WP, Wang KK (1986) Geometric modeling for swept volume of moving solids[J]. Comput Graph Appl IEEE 6(12):8–17. https://doi.org/10.1109/MCG.1986.276586

    Article  Google Scholar 

  112. Niu J, Jia J, Sun Y, Guo D (2020) Generation mechanism and quality of milling surface profile for variable pitch tools considering runout[J]. J Manuf Sci Eng 142(12):1–35. https://doi.org/10.1115/1.4047622

    Article  Google Scholar 

  113. Guo Q, Jiang Y, Sun Y (2023) 3D Surface topography prediction in the five-axis milling of plexiglas and metal using cutters with non-uniform helix and pitch angles combining runout[J]. J Mater Process Technol 117885. https://doi.org/10.1016/j.jmatprotec.2023.117885

  114. Peng Z, Jiao L, Yan P, Yuan M, Gao S, Yi J (2018) Simulation and experimental study on 3D surface topography in micro-ball-end milling[J]. Int J Adv Manuf Technol 96(5):1943–1958. https://doi.org/10.1007/s00170-018-1597-6

    Article  Google Scholar 

  115. Liu G, Dang J, Li C, Ming W, An Q, Chen M (2019) Investigation on the vibration and machined surface quality in tilt side milling of thin-walled plates[J]. Int J Adv Manuf Technol 103(5):2287–2300. https://doi.org/10.1007/s00170-019-03462-2

    Article  Google Scholar 

  116. Seguy S, Dessein G, Arnaud L (2008) Surface roughness variation of thin wall milling, related to modal interactions[J]. Int J Mach Tools Manuf 48(3–4):261–274. https://doi.org/10.1016/j.ijmachtools.2007.09.005

    Article  Google Scholar 

  117. Aras E (2008) Cutter-workpiece engagement identification in multi-axis milling[J]. University of chester. https://doi.org/10.14288/1.0066472

  118. Yang Y, Zhang W, Wan M et al (2013) A solid trimming method to extract cutter–workpiece engagement maps for multi-axis milling. Int J Adv Manuf Technol 68:2801–2813. https://doi.org/10.1007/s00170-013-4876-2

    Article  Google Scholar 

  119. Ju G, Song Q, Liu Z et al (2015) A solid-analytical-based method for extracting cutter-workpiece engagement in sculptured surface milling. Int J Adv Manuf Technol 80:1297–1310. https://doi.org/10.1007/s00170-015-7118-y

    Article  Google Scholar 

  120. Wang Z, Wang B, Yuan J (2019) Modeling of surface topography based on cutting vibration in ball-end milling of thin-walled parts. Int J Adv Manuf Technol 101:1837–1854. https://doi.org/10.1007/s00170-018-3095-2

    Article  Google Scholar 

  121. Artetxe E, Olvera D, de Lacalle LN, Campa FJ, Olvera D, Lamikiz A (2017) Solid subtraction model for the surface topography prediction in flank milling of thin-walled integral blade rotors (IBRs)[J]. Int J Adv Manuf Technol 90(1):741–752. https://doi.org/10.1007/s00170-016-9435-1

    Article  Google Scholar 

  122. Li ZL, Tuysuz O, Zhu LM et al (2018) Surface form error prediction in five-axis flank milling of thin-walled parts[J]. Int J Mach Tools Manuf 128:21–32. https://doi.org/10.1016/j.ijmachtools.2018.01.005

    Article  Google Scholar 

  123. Wang W, Li Q, Jiang Y (2020) A novel 3D surface topography prediction algorithm for complex ruled surface milling and partition process optimization[J]. Int J Adv Manuf Technol 11:1–15. https://doi.org/10.1007/s00170-020-05263-4

    Article  Google Scholar 

  124. Zhuo Y, Han Z, An D et al (2021) Surface topography prediction in peripheral milling of thin-walled parts considering cutting vibration and material removal effect[J]. Int J Mech Sci (211-):211. https://doi.org/10.1016/j.ijmecsci.2021.106797

  125. Qin S, Hao Y, Zhu L et al (2023) CWE identification and cutting force prediction in ball-end milling process[J]. Int J Mech Sci 239:107863. https://doi.org/10.1016/j.ijmecsci.2022.107863

    Article  Google Scholar 

  126. Lyu W, Liu Z, Song Q et al (2023) Modelling and prediction of surface topography on machined slot side wall with single-pass end milling. Int J Adv Manuf Technol 124:1095–1113. https://doi.org/10.1007/s00170-022-10587-4

    Article  Google Scholar 

  127. Zhu L, Yan B, Wang Y et al (2021) Inspection of blade profile and machining deviation analysis based on sample points optimization and NURBS knot insertion[J]. Thin-Walled Structures 162:107540. https://doi.org/10.1016/j.tws.2021.107540

    Article  Google Scholar 

  128. Bolar G, Mekonen M, Das A et al (2018) Experimental investigation on surface quality and dimensional accuracy during curvilinear thin-wall machining[J]. Mater Today: Proc 5(2):6461–6469. https://doi.org/10.1016/j.matpr.2017.12.259

    Article  Google Scholar 

  129. Ramanaiah BV, Manikanta B, Sankar MR et al (2018) Experimental study of deflection and surface roughness in thin wall machining of aluminum alloy[J]. Mater Today Proc 5(2):3745–3754. https://doi.org/10.1016/j.matpr.2017.11.627

    Article  Google Scholar 

  130. Chen M, Liu G, Dang J et al (2018) Effects of tool helix angles on machined surface morphology in tilt side milling of cantilever thin-walled plates[J]. Procedia CIRP 71:93–98. https://doi.org/10.1016/j.procir.2018.05.078

    Article  Google Scholar 

  131. Lavernhe S, Quinsat Y, Lartigue C (2010) Model for the prediction of 3D surface topography in 5-axis milling[J]. Int J Adv Manuf Technol 51(9):915–924. https://doi.org/10.1007/s00170-010-2686-3

    Article  Google Scholar 

  132. Zhang WH, Tan G, Wan M, Gao, T, Bassir DH (2008) A new algorithm for the numerical simulation of machined surface topography in multiaxis ball-end milling[J]. J Manuf Sci Eng 2008, 130(1). https://doi.org/10.1115/1.2815337

Download references

Funding

This study was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0704603).

Author information

Authors and Affiliations

Authors

Contributions

Yuwen Sun: Funding acquisition, Conceptualization, Methodology, Writing-reviewing and editing.

Yang Liu: Formal analysis, Visualization, Writing-original draft writing.

Meng Zheng: Validation, Writing-reviewing and editing.

Jinting Xu: Conceptualization, Formal analysis, Writing-reviewing and editing.

Qiang Guo: Conceptualization, Methodology, Formal analysis, Visualization, Writing-original draft writing.

Corresponding authors

Correspondence to Jinting Xu or Qiang Guo.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors agree to publication in the International Journal of Advanced Manufacturing Technology.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: "Yang Liu" is not one of corresponding author and should be removed from the list of corresponding authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liu, Y., Zheng, M. et al. A review on theories/methods to obtain surface topography and analysis of corresponding affecting factors in the milling process. Int J Adv Manuf Technol 127, 3097–3131 (2023). https://doi.org/10.1007/s00170-023-11723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11723-4

Keywords

Navigation