Skip to main content
Log in

Research progress of eco-friendly grinding technology for aviation nickel-based superalloys

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Nickel-based superalloys, as typically difficult-to-machine materials, are mainly used in aero-engine, ship, chemical industry, and other fields. To further enhance the surface quality of nickel-based superalloys, prolong the life of wheels, save the related costs, and achieve sustainable development, many exploratory works on eco-friendly sustainable grinding technology have been carried out by relevant researchers. Based on the action and material properties of nickel-based superalloys, the lubrication mechanism and research results of MQL are first summarized. Then, the latest research progress of micro-lubrication technology and its synergism technology is introduced briefly. In addition, the relationship between MQL penetration characteristics, grinding process characteristics, and eco-friendly sustainability is established. Finally, the technical mechanism and latest achievements of Cryo-MQL, NMQL, and EMQL are summarized. The aim of those works is to reveal the MQL synergistic mechanism and provide a theoretical basis and technical guidance for its grinding engineering application of nickel-based superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data and materials used to produce the results in this article can be obtained upon request from the corresponding authors.

Code availability

Not applicable.

Abbreviations

MQL:

Minimum quantity lubrication

EMQL:

Electrostatic minimum quantity lubrication

Cryo-MQL:

Cryogenic minimum quantity lubrication

NMQL:

Nanofluid minimum quantity lubrication

ENMQL:

Electrostatic nanofluid minimum quantity lubrication

LN2 :

Liquid nitrogen

LCO2 :

Liquid carbon dioxide

SEM:

Scanning electron microscope

CNTs:

Carbon nanotubes

F t :

Tangential grinding force

P :

Total energy consumed per unit of time

V s :

Grinding wheel speed

a p :

Grinding depth

e s :

Specific grinding energy

MWCNTs:

Multi-walled carbon nanotubes

Gnp:

Graphene nanoplatelets

HBN:

Hexagonal boron nitride

MQLPO:

Minimum quantity lubrication palm oil

MQLSE:

Minimum quantity lubrication synthetic ester

EMP:

Ecocut Mikro Plus

GPLs:

Graphene nanoplatelets

FCC:

Face-centered cubic

EDS:

Energy-dispersive spectroscopy

μ :

Friction coefficient

F n :

Normal grinding force

Q w :

Volume of workpiece removed per unit of time

V w :

Workpiece feed speed

B :

Grinding width

G ratio:

Grinding ratio

References

  1. Ding WF, Miao Q, Li BK, Xu JH (2019) Review on grinding technology of nickel-based superalloys used for aero-engine. J Mech Eng 55(1):189–215. https://doi.org/10.3901/JME.2019.01.189

    Article  Google Scholar 

  2. Caron P, Khan T (1999) Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp Sci Technol 3(8):513–523. https://doi.org/10.1016/S1270-9638(99)00108-X

    Article  Google Scholar 

  3. Wickramasinghe KC, Sasahara H, Rahim EA, Perera GIP (2021) Recent advances on high performance machining of aerospace materials and composites using vegetable oil-based metal working fluids. J Clean Prod 310:127459. https://doi.org/10.1016/j.jclepro.2021.127459

    Article  Google Scholar 

  4. Ezugwu EO (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tool Manu 45(12–13):1353–1367. https://doi.org/10.1016/j.ijmachtools.2005.02.003

    Article  Google Scholar 

  5. M’Saoubi R, Axinte D, Soo SL, Nobel C, Attia H, Kappmeyer G, Engin S, Sim WM (2015) High performance cutting of advanced aerospace alloys and composite materials. CIRP Ann 64(2):557–580. https://doi.org/10.1016/j.cirp.2015.05.002

    Article  Google Scholar 

  6. Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propul Power 22(2):361–374. https://doi.org/10.2514/1.18239

    Article  Google Scholar 

  7. Haq MI, Hussain S, Ali M, Farooq MU, Mufti NA, Pruncu CI, Wasim A (2021) Evaluating the effects of nano fluids based MQL milling of in718 associated to sustainable productions. J Clean Prod 310:127463. https://doi.org/10.1016/j.jclepro.2021.127463

    Article  Google Scholar 

  8. Unune DR, Mali HS (2017) Parametric modeling and optimization for abrasive mixed surface electro discharge diamond grinding of Inconel 718 using response surface methodology. Int J Adv Manuf Tech 93(9):3859–3872. https://doi.org/10.1007/s00170-017-0806-z

    Article  Google Scholar 

  9. Lou ZJ, Zhu ZL, Liu H, Yang GJ, Wen YY, Li Y (2022) Stray grain formation associated with constitutional supercooling during plasma re-melting of Ni-based single crystal superalloy based on temperature field simulation and actual substrate orientation. J Alloys Compd 890:161865. https://doi.org/10.1016/j.jallcom.2021.161865

    Article  Google Scholar 

  10. Wang Z, Zou L, Duan L, Liu X, Lv C, Gong M, Huang Y (2021) Study on passive compliance control in robotic belt grinding of nickel-based superalloy blade. J Manuf Process 68:168–179. https://doi.org/10.1016/j.jmapro.2021.07.020

    Article  Google Scholar 

  11. Sinha MK, Setti D, Ghosh S, Rao PV (2016) An investigation on surface burn during grinding of Inconel 718. J Manuf Process 21:124–133. https://doi.org/10.1016/j.jmapro.2015.12.004

    Article  Google Scholar 

  12. Dai CW, Ding WF, Zhu YJ, Xu JH, Yu HW (2018) Grinding temperature and power consumption in high speed grinding of Inconel 718 nickel-based superalloy with a vitrified CBN wheel. Precis Eng 52:192–200. https://doi.org/10.1016/j.precisioneng.2017.12.005

    Article  Google Scholar 

  13. Lin RQ, Fu C, Liu M, Jiang H, Li X, Ren ZM, Russell AM, Cao GH (2017) Microstructure and oxidation behavior of Al+Cr co-deposited coatings on nickel-based superalloys. Surf Coat Tech 310:273–277. https://doi.org/10.1016/j.surfcoat.2016.12.096

    Article  Google Scholar 

  14. Guo S, Li C, Zhang Y, Wang Y, Li B, Yang M, Zhang P, Liu G (2017) Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J Clean Prod 140:1060–1076. https://doi.org/10.1016/j.jclepro.2016.10.073

    Article  Google Scholar 

  15. Li BK, Li CH, Zhang YB, Wang YG, Jia DZ, Yang M, Zhang NQ, Wu QD, Han ZG, Sun K (2017) Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. J Clean Prod 154:1–11. https://doi.org/10.1016/j.jclepro.2017.03.213

    Article  Google Scholar 

  16. Chinchanikar S, Choudhury SK (2014) Hard turning using HiPIMS-coated carbide tools: wear behavior under dry and minimum quantity lubrication (MQL). Measurement 55:536–548. https://doi.org/10.1016/j.measurement.2014.06.00210.1016/j

    Article  Google Scholar 

  17. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tool Manu 57:83–101. https://doi.org/10.1016/j.ijmachtools.2012.02.002

    Article  Google Scholar 

  18. Irani RA, Bauer RJ, Warkentin A (2005) A review of cutting fluid application in the grinding process. Int J Mach Tool Manu 45(15):1696–1705. https://doi.org/10.1016/j.ijmachtools.2005.03.006

    Article  Google Scholar 

  19. Bhuyan M, Sarmah A, Gajrani KK, Pandey A, Thulkar TG, Sankar MR (2018) State of art on minimum quantity lubrication in grinding process. Materials Today: Proceedings, 19638–19647. https://doi.org/10.1016/j.matpr.2018.06.326

  20. Yıldırım ÇV, Sarıkaya M, Kıvak T, Şirin Ş (2019) The effect of addition of HBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625. Tribol Int 134:443–456. https://doi.org/10.1016/j.triboint.2019.02.027

    Article  Google Scholar 

  21. Rahim EA, Dorairaju H (2018) Evaluation of mist flow characteristic and performance in minimum quantity lubrication (MQL) machining. Measurement 123:213–225. https://doi.org/10.1016/j.measurement.2018.03.015

    Article  Google Scholar 

  22. Li BJ, Cao HJ, Yang X, Jafar S, Zeng D (2018) Thermal energy balance control model of motorized spindle system enabling high-speed dry hobbing process. J Manuf Process 35:29–39. https://doi.org/10.1016/j.jmapro.2018.07.010

    Article  Google Scholar 

  23. Morgan MN, Jackson AR, Wu H, Baines-Jones V, Batako A, Rowe WB (2008) Optimisation of fluid application in grinding. CIRP Ann 57(1):363–366. https://doi.org/10.1016/j.cirp.2008.03.090

    Article  Google Scholar 

  24. Singh H, Sharma VS, Singh S, Dogra M (2019) Nanofluids assisted environmental friendly lubricating strategies for the surface grinding of titanium alloy: Ti6Al4v-eli. J Manuf Process 39:241–249. https://doi.org/10.1016/j.jmapro.2019.02.004

    Article  Google Scholar 

  25. Singh G, Aggarwal V, Singh S (2020) Critical review on ecological, economical and technological aspects of minimum quantity lubrication towards sustainable machining. J Clean Prod 271(22):122185. https://doi.org/10.1016/j.jclepro.2020.122185

    Article  Google Scholar 

  26. Amiril SAS, Rahim EA, Syahrullail S (2017) A review on ionic liquids as sustainable lubricants in manufacturing and engineering: recent research, performance, and applications. J Clean Prod 168:1571–1589. https://doi.org/10.1016/j.jclepro.2017.03.197

    Article  Google Scholar 

  27. Rabiei F, Rahimi AR, Hadad MJ, Ashrafijou M (2015) Performance improvement of minimum quantity lubrication (MQL)technique in surface grinding by modeling and optimization. J Clean Prod 86:447–460. https://doi.org/10.1016/j.jclepro.2014.08.045

    Article  Google Scholar 

  28. Yuan SM, Zhu GY, Li W (2017) Recent progress on lubricant characteristics of minimum quantity lubrication (MQL) technology in green cutting. J Mech Eng 53(17):131–140. https://doi.org/10.3901/JME.2017.17.131

    Article  Google Scholar 

  29. Najiha MS, Rahman MM, Yusoff AR (2016) Environmental impacts and hazards associated with metal working fluids and recent advances in the sustainable systems: a review. Renew Sust Energy Rev 60:1008–1031. https://doi.org/10.1016/j.rser.2016.01.065

    Article  Google Scholar 

  30. Chen Z, Wong K, Li W, Liang SY, Stephenson DA (2001) Cutting fluid aerosol generation due to spin-off in turning operation: analysis for environmentally conscious machining. J Manuf Sci Eng 123(3):506–512. https://doi.org/10.1115/1.1367268

    Article  Google Scholar 

  31. Benedicto E, Carou D, Rubio EM (2017) Technical, economic and environmental review of the lubrication/cooling systems used in machining processes. Procedia Eng 184. https://doi.org/10.1016/j.proeng.2017.04.075.

  32. Hadad M, Makarian J (2021) Experimental investigation of the effects of dressing and coolant-lubricant conditions on grinding of nickel-based superalloy-Inconel 738. Energy Equipment Syst 9(1):27–36. https://doi.org/10.22059/EES.2021.243054

    Article  Google Scholar 

  33. Korkmaz ME, Gupta MK, Boy M, Yaşar N, Krolczyk GM, Günay M (2021) Influence of duplex jets MQL and nano-MQL cooling system on machining performance of Nimonic 80A. J Manuf Process 69:112–124. https://doi.org/10.1016/j.jmapro.2021.07.039

    Article  Google Scholar 

  34. Maruda RW, Krolczyk GM, Feldshtein E, Pusavec F, Szydlowski M, Legutko S, Sobczak-Kupiec A (2016) A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int J Mach Tool Manu 100:81–92. https://doi.org/10.1016/j.ijmachtools.2015.10.008

    Article  Google Scholar 

  35. Thellaputta GR, Chandra PS, Rao CSP (2017) Machinability of nickel based superalloys: a review. Mater Today: Proc 4(2):3712–3721. https://doi.org/10.1016/j.matpr.2017.02.266

    Article  Google Scholar 

  36. Song W, Wang X, Li J, Meng J, Sun X (2021) Influence of Ta/Al ratio on the microstructure and creep property of a Ru-containing Ni-based single-crystal superalloy. J Mater Sci Tech 89:16–23. https://doi.org/10.1016/j.jmst.2021.03.002

    Article  Google Scholar 

  37. Darolia R (2019) Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects. Int Mater Rev 64(6):355–380. https://doi.org/10.1080/09506608.2018.1516713

    Article  Google Scholar 

  38. Zhang J, Wang L, Wang D, Xie G, Lu YZ, Shen J, Lou LH (2019) Recent progress in research and development of nickel-based single crystal superalloys. Acta Metall Sin 55(9):1077–1094. https://doi.org/10.11900/0412.1961.2019.00122

    Article  Google Scholar 

  39. Kearsey RM, Beddoes JC, Jaansalu KM, Thompson WT, Au P (2004) The effects of Re, W and Ru on micro segregation behaviour in single crystal superalloy systems. Superalloys 2004:801–810

    Article  Google Scholar 

  40. Milhet X, Cormier J, Organista A (2010) On the role of the internal stress during non-isothermal creep life of a first generation nickel based single crystal superalloy. Mater Sci Eng A 527(9):2280–2288. https://doi.org/10.1016/j.msea.2009.11.067

    Article  Google Scholar 

  41. Li JR, Zhong ZG, Tang DZ, Liu SZ, Wei P, Wei PY, Han M (2000) A low-cost second generation single crystal superalloy DD6. Superalloys, 777–783

  42. Yang WP, Li JR, Liu SZ, Shi ZX, Zhao JQ, Wang XG (2019) Orientation dependence of transverse tensile properties of nickel-based third generation single crystal superalloy DD9 from 760 to 1100℃. T Nonferr Metal Soc China 29(3):558–568. https://doi.org/10.1016/S1003-6326(19)64964-2

    Article  Google Scholar 

  43. Walston S, Cetel A, MacKay R, Ohara K, Duhl D, Dreshfield R (2004) Joint development of a fourth generation single crystal superalloy. Superalloys 2004:1–17. https://doi.org/10.7449/2004/Superalloys_2004_15_24

    Article  Google Scholar 

  44. Sato A, Yeh AC, Kobayashi T, Yokokawa T, Harada H, Murakumo T, Zhang JX (2007) Fifth generation Ni based single crystal superalloy with superior elevated temperature properties. Energy Materials 2(1):19–25. https://doi.org/10.1179/174892407X205254

    Article  Google Scholar 

  45. Feng WH, Chang JX, Zhu SD (2021) Nickel-based single crystal superalloys with different rhenium contents. Chinese J Rare Metals 45(03):353–362. https://doi.org/10.13373/j.cnki.cjrm.XY20050020

    Article  Google Scholar 

  46. Ruzzi RD, de Paiva RL, Gelamo RV, Machado AR, da Silva RB (2021) Study on grinding of inconel 625 and 718 alloys with cutting fluid enriched with multilayer graphene platelets. Wear 476:203697. https://doi.org/10.1016/j.wear.2021.203697

    Article  Google Scholar 

  47. Krolczyk G, Maruda R, Krolczyk JB, Wojciechowski S, Budzik G (2019) Ecological trends in machining as a key factor in sustainable production-a review. J Clean Prod 218:601–615. https://doi.org/10.1016/j.jclepro.2019.02.017

    Article  Google Scholar 

  48. Ding QQ, Lao ZZ, Wei H, Li JX, Bei HB, Zhang Z (2020) Site occupancy of alloying elements in γ’ phase of nickel-base single crystal superalloys. Intermetallics 121:106772. https://doi.org/10.1016/j.intermet.2020.106772

    Article  Google Scholar 

  49. Ding QQ, Bei HB, Zhao XB, Zhang Z (2020) Application of the transmission electron microscopy on Ni-base single crystal superalloys: progress and perspective 2009. J Chinese Electron Microscopy Soc 55(1):189–215. 10.00-6281(2020)05-0586-17

  50. Yeh AC, Sato A, Kobayashi T, Harada H (2008) On the creep and phase stability of advanced Ni-base single crystal superalloys. Mater Sci Eng A 490(1–2):445–451. https://doi.org/10.1016/j.msea.2008.02.008

    Article  Google Scholar 

  51. Li JR (2004) Yu JL (2004) The impact of random grain boundary distribution on fracture in coarse-grained aluminum polycrystal. Acta Mech Solida Sin 03:335–338. https://doi.org/10.19636/j.cnki.cjsm42-1250/o3.2004.03.016

    Article  Google Scholar 

  52. Gong YD, Zhou YD, Wen XL, Cheng J, Sun Y, Ma LJ (2017) Experimental study on micro-grinding force and subsurface microstructure of nickel-based single crystal superalloy in micro grinding. J Mech Sci Technol 31(7):3397–3410. https://doi.org/10.1007/s12206-017-0629-8

    Article  Google Scholar 

  53. Hamran N, Ghani JA, Ramli R, Haron C (2020) A review on recent development of minimum quantity lubrication for sustainable machining. J Clean Prod 268:122165. https://doi.org/10.1016/j.jclepro.2020.122165

    Article  Google Scholar 

  54. Chandel RS, Kumar R, Kapoor J (2021) Sustainability aspects of machining operations: a summary of concepts. Mater Today: Proc (4) 50(5):716–727. https://doi.org/10.1016/j.matpr.2021.04.624.

  55. Dogra M, Sharma VS, Dureja JS, Gill SS (2018) Environment-friendly technological advancements to enhance the sustainability in surface grinding A review. J Clean Prod 197:218–231. https://doi.org/10.1016/j.jclepro.2018.05.280

    Article  Google Scholar 

  56. Sarikaya M, Gupta MK, Tomaz I, Pimenov DY, Kuntoglu M, Khanna N, Yildirim CV, Krolczyk GM (2021) A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys. CIRP J Manuf Sci Technol 35:624–658. https://doi.org/10.1016/j.cirpj.2021.08.005

    Article  Google Scholar 

  57. Yazid MZA, CheHaron CH, Ghani JA, Ibrahim GA, Said AYM (2011) Surface integrity of Inconel 718 when finish turning with PVD coated carbide tool under MQL. Procedia Eng 19:396–401. https://doi.org/10.1016/j.proeng.2011.11.131

    Article  Google Scholar 

  58. Li Q, Gong YD, Cai M, Liu MJ (2017) Research on surface integrity in milling Inconel718 superalloy. Int J Adv Manuf Tech 92(1):1449–1463. https://doi.org/10.1007/s00170-017-0080-0

    Article  Google Scholar 

  59. Gong YD, Zhang WJ, Cai M, Zhou XX (2020) Experimental study on the grinding metamorphic layer of nickel-based single crystal superalloy. J North Univ 41(06):846–851. https://doi.org/10.12068/j.issn.1005-3026.2020.06.015

    Article  Google Scholar 

  60. da Silva LR, Bianchi EC, Fusse RY, Catai RE, Franca TV, Aguiar PR (2007) Analysis of surface integrity for minimum quantity lubricant—MQL in grinding. Int J Mach Tool Manu 47(2):412–418. https://doi.org/10.1016/j.ijmachtools.2006.03.015

    Article  Google Scholar 

  61. Sadeghi MH, Haddad MJ, Tawakoli T, Emami M (2009) Minimal quantity lubrication-MQL in grinding of Ti–6Al–4V titanium alloy. Int J Adv Manuf Tech 44(5):487–500. https://doi.org/10.1007/s00170-008-1857-y

    Article  Google Scholar 

  62. He AD, Ye BY, Qin MY (2015) Influence of minimal quantity lubrication on machined residual stress. J Hunan Univ 42(10):48–53. 1674–2974(2015)10–0048–06.

  63. Pusavec F, Hamdi H, Kopac J, Jawahir IS (2011) Surface integrity in cryogenic machining of nickel based alloy—Inconel 718. J Mater Process Tech 211(4):773–783. https://doi.org/10.1016/j.jmatprotec.2010.12.013

    Article  Google Scholar 

  64. Qin MY, He AD, Ye BY, Liang LD, Zhou L (2015) Research on residual stresses by MQL turning of stainless steel. Machine Tool and Hydraulics 43(23):69–71+61. https://doi.org/10.3969/j.issn.1001-3881.2015.23.018

    Article  Google Scholar 

  65. Liu DW, Zhou L, Qin MY (2020) Experimental study on influence of minimal quantity lubrication system parameters on machining residual stress. Machine Tool and Hydraulics 48(13):57–60. https://doi.org/10.3969/j.issn.1001-3881.2020.13.012

    Article  Google Scholar 

  66. Pervaiz S, Kannan S, Kishawy HA (2018) An extensive review of the water consumption and cutting fluid based sustainability concerns in the metal cutting sector. J Clean Prod 197(PT.1):134–153. https://doi.org/10.1016/j.jclepro.2018.06.190

    Article  Google Scholar 

  67. Sharma BK, Adhvaryu A, Erhan SZ (2008) Friction and wear behavior of thioether hydroxy vegetable oil. Tribol Int 42(2):353–358. https://doi.org/10.1016/j.triboint.2008.07.004

    Article  Google Scholar 

  68. Wakabayashi T, Suda S (2008) Practical performance and action mechanism of ester lubricants in minimal quantity lubrication machining. J Jpn Petrol Inst 51(3):134–142. https://doi.org/10.1627/jpi.51.134

    Article  Google Scholar 

  69. Ali MAM, Azmi AI, Murad MN, Zain MZM, Khalil ANM, Shuaib NA (2020) Roles of new bio-based nanolubricants towards eco-friendly and improved machinability of Inconel 718 alloys. Tribol Int 144:106106. https://doi.org/10.1016/j.triboint.2019.106106

    Article  Google Scholar 

  70. Suda S, Yokota H, Inasaki I, Wakabayashi T (2002) A synthetic ester as an optimal cutting fluid for minimal quantity lubrication machining. CIRP Ann 51(1):95–98. https://doi.org/10.1016/S0007-8506(07)61474-7

    Article  Google Scholar 

  71. Rahim EA, Sasahara H (2011) A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys. Tribol Int 44(3):309–317. https://doi.org/10.1016/j.triboint.2010.10.032

    Article  Google Scholar 

  72. Su Y, Gong L, Li B, Liu ZQ, Chen DD (2016) Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. Int J Adv Manuf Technol 83:2083–2089. https://doi.org/10.1007/s00170-015-7730-x

    Article  Google Scholar 

  73. Wang YG, Li CH, Zhang YB, Yang M, Li BK, Jia DZ, Hou YL, Mao C (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding using different types of vegetable oils. J Clean Prod 127:487–499. https://doi.org/10.1016/j.jclepro.2016.03.121

    Article  Google Scholar 

  74. Hu Z, Dang H, Liu W, Chen J (2000) Friction characteristics of vegetable oil fatty acids. Lubricat Oil 15(04):38–41

    Google Scholar 

  75. Quinchia LA, Delgado MA, Franco JM, Spikes HA, Gallegos C (2012) Low-temperature flow behaviour of vegetable oil-based lubricants. Ind Crop Prod 37(1):383–388. https://doi.org/10.1016/j.indcrop.2011.12.021

    Article  Google Scholar 

  76. Liu HQ (1993) Relationship between liquid viscosity and thermal conductivity. Petrochemical industry 4(2):101–106

    Google Scholar 

  77. Tai BL, Dasch JM, Shih AJ (2011) Evaluation and comparison of lubricant properties in minimum quantity lubrication machining. Mach Sci Technol 15(4):376–391. https://doi.org/10.1080/10910344.2011.620910

    Article  Google Scholar 

  78. Gupta MK, Song QH, Liu ZQ, Sarikaya M, Jamil M, Mia M, Singla AK, Khan AM, Khanna N, Pimenov DY (2021) Environment and economic burden of sustainable cooling/lubrication methods in machining of Inconel-800. J Clean Prod 287:125074. https://doi.org/10.1016/j.jclepro.2020.125074

    Article  Google Scholar 

  79. Liu MZ, Li CH, Zhang YB, An QL, Yang M, Gao T, Mao C, Liu B, Cao HJ, Xu XF, Said Z, Debnath S, Jamil M, Ali HA, Sharma S (2021) Cryogenic minimum quantity lubrication machining: from mechanism to application. Front Mech Eng 16(4):649–697. https://doi.org/10.1007/s11465-021-0654-2

    Article  Google Scholar 

  80. Pereira O, Rodríguez A, Fernández-Abia AI, Barreiro J, López de Lacalle LN (2016) Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. J Clean Prod 139:440–449. https://doi.org/10.1016/j.jclepro.2016.08.030

    Article  Google Scholar 

  81. Singla AK, Singh J, Sharma VS (2018) Processing of materials at cryogenic temperature and its implications in manufacturing: a review. Mater Manuf Process 33(15):1603–1640. https://doi.org/10.1080/10426914.2018.1424908

    Article  Google Scholar 

  82. Khanna N, Agrawal C, Pimenov DY, Singla AK, Machado AR, da Silva LRR, Gupta MK, Sarikaya M, Krolczyk GM (2021) Review on design and development of cryogenic machining setups for heat resistant alloys and composites. J Manuf Process 68:398–422. https://doi.org/10.1016/j.jmapro.2021.05.053

    Article  Google Scholar 

  83. Arafat R, Madanchi N, Thiede S, Herrmann C, Skerlos SJ (2021) Supercritical carbon dioxide and minimum quantity lubrication in pendular surface grinding-a feasibility study. J Clean Prod 126560. https://doi.org/10.1016/j.jclepro.2021.126560.

  84. Wang ZY, Rajurkar KP, Fan J, Lei S, Shin YC, Petrescu G (2003) Hybrid machining of Inconel 718. Int J Mach Tool Manu 43(13):1391–1396. https://doi.org/10.1016/S0890-6955(03)00134-2

    Article  Google Scholar 

  85. Kenda J, Pusavec F, Kopac J (2011) Analysis of residual stresses in sustainable cryogenic machining of nickel based alloy—Inconel 718. J Manuf Sci E-T ASME 133(4):041009. https://doi.org/10.1115/1.4004610

    Article  Google Scholar 

  86. Shokrani A, Dhokia V, Newman ST, Imani-Asrai R (2012) An initial study of the effect of using liquid nitrogen coolant on the surface roughness of inconel718 nickel-based alloy in cnc milling. Procedia Cirp 3:121–125. https://doi.org/10.1016/j.procir.2012.07.022

    Article  Google Scholar 

  87. Iturbe A, Hormaetxe E, Garay A, Arrazola PJ (2016) Surface integrity analysis when machining inconel 718 with conventional and cryogenic cooling. Procedia CIRP 45:67–70. https://doi.org/10.1016/j.procir.2016.02.095

    Article  Google Scholar 

  88. Pereira O, Celaya A, Urbikaín G, Rodríguez A, Lacalle L (2020) Co2 cryogenic milling of inconel 718: cutting forces and tool wear. J Mater Res Technol 9(4):8459–8468. https://doi.org/10.1016/j.jmrt.2020.05.118

    Article  Google Scholar 

  89. Li CH, Lu BH, Ding YC, Cai GQ (2009) Innovative technology investigation into cryogenic cooling green grinding using liquid nitrogen jet. International Conference on Management & Service Science IEEE, 2009. https://doi.org/10.1109/ICMSS.2009.5302527

  90. Shah P, Bhat P, Khanna N (2020) Life cycle assessment of drilling inconel 718 using cryogenic cutting fluids while considering sustainability parameters. Sustain Energy Techn 43:100950. https://doi.org/10.1016/j.seta.2020.100950

    Article  Google Scholar 

  91. Patel T, Khanna N, Yadav S, Shah P, Kotkunde N (2021) Machinability analysis of nickel-based superalloy nimonic 90: a comparison between wet and lco2 as a cryogenic coolant. Int J Adv Manuf Tech 113:3613–3628. https://doi.org/10.1007/s00170-021-06793-1

    Article  Google Scholar 

  92. Pusavec F, Hamdi H, Kopac J, Jawahir IS (2011) Surface integrity in cryogenic machining of nickel based alloy—inconel 718. J Mater Process Technol 211(4):773–783. https://doi.org/10.1016/j.jmatprotec.2010.12.013

    Article  Google Scholar 

  93. Balan ASS, Vijayaraghavan L, Krishnamurthy R, Kuppan P, Oyyaravelu R (2016) An experimental assessment on the performance of different lubrication techniques in grinding of inconel 751. J Adv Res 7(5):709–718. https://doi.org/10.1016/j.jare.2016.08.002

    Article  Google Scholar 

  94. Khanna N, Shah P, Maruda RW, Krolczyk GM, Hegab H (2020) Experimental investigation and sustainability assessment to evaluate environmentally clean machining of 15–5 ph stainless steel. J Manuf Process 56:1027–1038. https://doi.org/10.1016/j.jmapro.2020.05.016

    Article  Google Scholar 

  95. Agrawal C, Wadhwa J, Pitroda A, Pruncu CL, Sarikaya M, Khanna N (2021) Comprehensive analysis of tool wear, tool life, surface roughness, costing and carbon emissions in turning Ti-6Al-4V titanium alloy: cryogenic versus wet machining. Tribol Int 153:106597. https://doi.org/10.1016/j.triboint.2020.106597

    Article  Google Scholar 

  96. Pereira O, Rodríguez A, Fernández-Abia AI, Barreiro J, López DLLN (2016) Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. J Clean Prod 139:440–449. https://doi.org/10.1016/j.jclepro.2016.08.030

    Article  Google Scholar 

  97. Alberdi R, Sanchez JA, Pombo I, Ortega N, Izquierdo B, Plaza S, Barrenetxea D (2011) Strategies for optimal use of fluids in grinding. Int J Mach Tool Manu 51(6):491–499. https://doi.org/10.1016/j.ijmachtools.2011.02.007

    Article  Google Scholar 

  98. Pušavec F, Grguraš D, Koch M, Krajnik P (2019) Cooling capability of liquid nitrogen and carbon dioxide in cryogenic milling. CIRP Ann 68(1):73–76. https://doi.org/10.1016/j.cirp.2019.03.016

    Article  Google Scholar 

  99. Sinha MK, Madarkar R, Ghosh S, Rao PV (2017) Application of eco-friendly nanofluids during grinding of inconel 718 through small quantity lubrication. J Clean Prod 141:1359–1375. https://doi.org/10.1016/j.jclepro.2016.09.212

    Article  Google Scholar 

  100. Cui XB, Guo YH, Guo JX, Ming PM (2020) Bio-inspired design of cleaner interrupted turning and its effects on specific cutting energy and harmful gas emission. J Clean Prod 271:122354. https://doi.org/10.1016/j.jclepro.2020.122354

    Article  Google Scholar 

  101. Pashmforoush F, Bagherinia RD (2018) Influence of water-based copper nanofluid on wheel loading and surface roughness during grinding of inconel 738 superalloy. J Clean Prod 178:363–372. https://doi.org/10.1016/j.jclepro.2018.01.003

    Article  Google Scholar 

  102. Eltaggaz A, Hegab H, Deiab I, Kishawy HA (2018) Hybrid nano-fluid-minimum quantity lubrication strategy for machining austempered ductile iron (ADI). Int J Interact Design Manuf 12:1273–1281. https://doi.org/10.1007/s12008-018-0491-7

    Article  Google Scholar 

  103. Hegab H, Umer U, Soliman M, Kishawy HA (2018) Effects of nano-cutting fluids on tool performance and chip morphology during machining inconel 718. Int J Adv Manuf Tech 96:3449–3458. https://doi.org/10.1007/s00170-018-1825-0

    Article  Google Scholar 

  104. Jamil M, Khan AM, Hegab H, Gong L, Mia M, Gupta MK, He N (2019) Effects of hybrid Al2O3-cnt nanofluids and cryogenic cooling on machining of Ti-6al-4V. Int J Adv Manuf Tech 102:3895–3909. https://doi.org/10.1007/s00170-019-03485-9

    Article  Google Scholar 

  105. Wang S, Li CH, Zhang Q (2013) Evalution of grinding performance in minum quanlity lubrication with nanoparticles. Manuf Technol Machine Tool 2:86–89

    Google Scholar 

  106. Zhang Q, Li CH, Wang S (2013). Analysis of cooling characteristic for minimum quantity lubrication with nanoparticles. Manuf Technol Machine Tool, 91–96

  107. Sirin S, Sarikaya M, Yildirim CV, Kivak T (2021) Machinability performance of nickel alloy X-750 with SiAlON ceramic cutting tool under dry, MQL and hBN mixed nanofluid-MQL. Tribol Int 153:106673. https://doi.org/10.1016/j.triboint.2020.106673

    Article  Google Scholar 

  108. Dong L, Li CH, Bai XF, Yin QG, Sun P (2018) Cooling performance analysis based on minimum quantity lubrication milling with Al2O3 nanoparticle. Manuf Technol Machine Tool 131–135. 10.19287lj. cnki.1005–2402.2018.09.029

  109. Singh AK, Kumar A, Sharma V, Kala P (2020) Sustainable techniques in grinding: state of the art review. J Clean Prod 269:121876. https://doi.org/10.1016/j.jclepro.2020.121876

    Article  Google Scholar 

  110. Nguyen TK, Do I, Kwon P (2012) A tribological study of vegetable oil enhanced by nano-platelets and implication in MQL machining. Int J Precis Eng Manuf 13(7):1077–1083. https://doi.org/10.1007/s12541-012-0141-0

    Article  Google Scholar 

  111. Kalita P, Malshe AP, Rajurkar KP (2012) Study of tribo-chemical lubricant film formation during application of nanolubricants in minimum quantity lubrication (MQL) grinding. CIRP Annals-Manuf Technol 61(1):327–330. https://doi.org/10.1016/j.cirp.2012.03.031

    Article  Google Scholar 

  112. Kalita P, Malshe AP, Kumar SA, Yoganath VG, Gurumurthy T (2012) Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. J Manuf Process 14(2):160–166. https://doi.org/10.1016/j.jmapro.2012.01.001

    Article  Google Scholar 

  113. Jia DZ, Li CH, Zhang YB, Yang M, Wang GY (2017) Performance evaluation of grinding ductile iron under nanofluids minimun quantity lubrication. Manuf Technol Machine Tool, 131–135. 10.19287li. cnki.1005–2402.2017.12.004

  114. Chaudhari SS, Chakule RR, Tamale PS (2019) Experimental study of heat transfer characteristics of al2o3 and coo nanofluids for machining application. Mater Today: Proc 18(9):788–797. https://doi.org/10.1016/j.matpr.2019.06.499

    Article  Google Scholar 

  115. Wang YG, Li CH, Zhang YB, Li BK, Yang M, Zhang XP, Guo SM, Liu GT (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribal Int 99:198–210. https://doi.org/10.1016/j.triboint.2016.03.023

    Article  Google Scholar 

  116. He gab H, Salem A, Harnarayan S, Kishawy HA (2021) Analysis, modeling, and multi-objective optimization of machining inconel 718 with nano-additives based minimum quantity coolant. Applied Soft Computing 108(7–8):107416. https://doi.org/10.1016/j.asoc.2021.107416

    Article  Google Scholar 

  117. Wang YG, Li CH, Zhang YB, Min Y, Li BK, Lan D, Wang J (2018) Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. Int J Precis Eng Manuf-Green Technol 5(2):327–339. https://doi.org/10.1007/s40684-018-0035-4

    Article  Google Scholar 

  118. Choi C, Jung M, Choi Y, Lee J, Oh J (2011) Tribological properties of lubricating oil-based nanofluids with metal/carbon nanoparticles. J Nanosci Nanotechno 11(1):368–371. https://doi.org/10.1166/jnn.2011.3227

    Article  Google Scholar 

  119. Shen B, Shih AJ (2009) Minimum quantity lubrication (MQL) grinding using vitrified cbn wheels. Transactions of NAMRI/SME 37:129–136

    Google Scholar 

  120. Zhang YB, Li CH, Jia DZ, Zhang D, Zhang X (2015) Experimental evaluation of the lubrication performance of mos2/cnt nanofluid for minimal quantity lubrication in ni-based alloy grinding. Int J Mach Tool Manu 99:19–33. https://doi.org/10.1016/j.ijmachtools.2015.09.003

    Article  Google Scholar 

  121. Barewar SD, Kotwani A, Chougule SS, Unune DR (2021) Investigating a novel ag/zno based hybrid nanofluid for sustainable machining of inconel 718 under nanofluid based minimum quantity lubrication. J Manuf Process 66(9–12):313–324. https://doi.org/10.1016/j.jmapro.2021.04.017

    Article  Google Scholar 

  122. Singh RK, Sharma AK, Dixit AR, Tiwari AK, Pramanik A, Mandal A (2017) Performance evaluation of alumina-graphene hybrid nano-cutting fluid in hard turning. J Clean Prod 162:830–845. https://doi.org/10.1016/j.jclepro.2017.06.104

    Article  Google Scholar 

  123. Zhao XF, Yu TB, Li CH, Wang WS (2019) Effect of Nano MoS, Concentrations on nano minimum quantity lubrication in cfrps grinding. J Northeast Univ 40(8):1127–1130+1138. 10.12068/ j.issn.1005 - 3026.2019.08.012

  124. Zhang YB, Li CH, Jia DZ, Zhang D, Zhang X (2015) Experimental evaluation of mos2 nanoparticles in jet mql grinding with different types of vegetable oil as base oil. J Clean Prod 87:930–940. https://doi.org/10.1016/j.jclepro.2014.10.027

    Article  Google Scholar 

  125. Virdi RL, Chatha SS, Singh H (2020) Machining performance of inconel-718 alloy under the influence of nanoparticles based minimum quantity lubrication grinding. J Manuf Process 59:355–365. https://doi.org/10.1016/j.jmapro.2020.09.056

    Article  Google Scholar 

  126. Şirin Ş, Kıvak T (2019) Performances of different eco-friendly nanofluid lubricants in the milling of inconel x–750 superalloy. Tribol Int 137:180–192. https://doi.org/10.1016/j.triboint.2019.04.042

    Article  Google Scholar 

  127. Yildirim CV, Sarikaya M, Kivak T, Sirin S (2019) The effect of addition of hbn nanoparticles to nanofluid-mql on tool wear patterns, tool life, roughness and temperature in turning of ni-based inconel 625. Tribol Int 134:443–456. https://doi.org/10.1016/j.triboint.2019.02.027

    Article  Google Scholar 

  128. Khanna N, Shah P, Zadafiya K, Bhalodiya M, Maruda RW, Krolczyk GM (2020) In-house development of eco-friendly lubrication techniques (EMQL, nanoparticles+EMQL and EL) for improving machining performance of 15–5 PHSS. Tribol Int 151:106476. https://doi.org/10.1016/j.triboint.2020.106476

    Article  Google Scholar 

  129. Jia DZ, Zhang NQ, Li CH (2021) Particle size distribution characteristics of electrostatic minimum quantity lubrication and grinding surface quality evaluation. Diamond Abrasives Eng 41(3):89–95. https://doi.org/10.13394/j.cnki.jgszz.2021.3.0013

    Article  Google Scholar 

  130. Jia DZ, Li CH, Zhang YB, Yang M, Cao HJ, Liu B, Zhou ZM (2022) Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant. J Mech Eng 58(5):198–211. https://doi.org/10.3901/JME.2022.05.198

    Article  Google Scholar 

  131. Su Y, Jiang H, Liu ZQ (2020) A study on environment-friendly machining of titanium alloy via composite electrostatic spraying. Int J Adv Manuf Tech 110:1305–1317. https://doi.org/10.1007/s00170-020-05925-3

    Article  Google Scholar 

  132. Lv T, Huang SQ, Liu ET, Ma YL, Xu XF (2018) Tribological and machining characteristics of an electrostatic minimum quantity lubrication (EMQL) technology using graphene nano-lubricants as cutting fluids. J Manuf Process 34:225–237. https://doi.org/10.1016/j.jmapro.2018.06.016

    Article  Google Scholar 

  133. Zhang XY, Li CH, Zhang YB, Yang M, Jia DZ, Hou YL, Zhang NQ, Li RZ (2018) Ji HJ (2018) Experimental study of effect of electric field parameters on atomization characteristics and grinding performance of minimal quantity lubrication. Manuf Technol Machine Tool 10:105–111. https://doi.org/10.19287/j.cnki.1005-2402.2018.10.023

    Article  Google Scholar 

  134. Xu WH, Li CH, Zhang YB, Ali HM, Sharma S, Li RZ, Yang M, Gao T, Liu MZ, Wang XM, Said Z, Liu X, Zhou ZM (2022) Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. Int J Extrem Manuf 4:042003

    Article  Google Scholar 

  135. Lv T, Xu XF, Yu AB, Hu XD (2021) Oil mist concentration and machining characteristics of sio2 water-based nano-lubricants in electrostatic minimum quantity lubrication-EMQL milling. J Mater Process Tech 290:116964. https://doi.org/10.1016/j.jmatprotec.2020.116964

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. U1908230&51775100), the Natural Science Foundation of Liaoning Province (2023-BS-185), the Science and Technology Research Project of the Educational Department of Liaoning Province (No. LJKZ0384&L2017LQN024), the Talent Scientific Research Fund of LNPU (No. 2021XJJL-007).

Author information

Authors and Affiliations

Authors

Contributions

Tao Zhu: writing—original draft; conceptualization. Ming Cai: writing—original draft; software; investigation; funding. Yadong Gong: supervision, investigation, methodology. Xingjun Gao: investigation, conceptualization, formal analysis. Ning Yu: investigation, conceptualization. Qiang Gong: investigation, conceptualization.

Corresponding author

Correspondence to Ming Cai.

Ethics declarations

Ethical approval

The authors declare that there is no ethical issue applied to this article.

Consent to participate

The authors declare that all authors have read and approved to submit this manuscript to IJAMT.

Consent for publication

The authors declare that all authors agree to sign the transfer of copyright for the publisher to publish this article upon acceptance.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Cai, M., Gong, Y. et al. Research progress of eco-friendly grinding technology for aviation nickel-based superalloys. Int J Adv Manuf Technol 126, 2863–2886 (2023). https://doi.org/10.1007/s00170-023-11336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11336-x

Keywords

Navigation