Skip to main content

Nickel-Based Superalloys

  • Chapter
  • First Online:
Aerospace Materials and Material Technologies

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

Nickel-based superalloys are an exceptional class of structural materials for high temperature applications, particularly in the challenging environment of the turbine sections of aircraft engines. Continued improvements in the properties of these materials have been possible through close control of chemistry and microstructure as well as the introduction of advanced processing technologies. Surface modification by application of coating technology concurrent with the introduction of directional structures and then single crystals, has extended the useful temperature range of superalloys. Further improvements are likely with the development and implementation of tools for alloy design, microstructure-process evolution, and mechanical-property modelling. To date, six generations of single crystal (SC) nickel-based superalloys have been developed with improved creep properties and phase stability. Therefore it appears that the evolution of advanced nickel-based superalloys is a never ending process, and their replacement in turbine engine applications seems to be impossible at least for a few more decades. The present chapter is a brief review of various aspects pertaining to chemical composition, heat treatment, microstructure, properties and applications of both cast, and wrought alloys as well as the evolution of advanced cast nickel-based superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betteridge W (1974) The Nimonic alloys, and other Nickel-base high temperature alloys. In: Betteridge W, Heslop J (eds) Edward Arnold, London, UK

    Google Scholar 

  2. Sims CT, Stoloff NS, Hagel WC (1987) Superalloys II. Wiley, Hoboken, NJ, USA

    Google Scholar 

  3. Meetham GW, Van de Voorde MH (2000) Materials for high temperature engineering applications. Springer-Verlag, Berlin, Germany

    Google Scholar 

  4. Donachie MJ, Donachie SJ (2002) Superalloys: a technical guide, 2nd edn. ASM International. Materials Park, OH, USA

    Google Scholar 

  5. Reed RC (2006) The superalloys: fundamentals and applications. Cambridge University Press, Cambridge, UK

    Google Scholar 

  6. Muktinutalapati NR (2011) Materials for gas turbines—an overview, advances in gas turbine technology. Benini E (ed). Intech Open Source Publisher: book.department@intechopen.com, pp 293–314

    Google Scholar 

  7. MacKay A, Gabb TP, Smialek JL, Nathal MV (2009) Alloy design challenge: development of low density superalloys for turbine blade applications. Rebecca Glenn Research Center, Cleveland, Ohio 44135, NASA/TM—2009-215819

    Google Scholar 

  8. Caron P, Khan T, Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp Sci Technol 3(8):513–523

    Google Scholar 

  9. Khan T (1986) High temperature alloys for gas turbines and other applications. In: Betz W et al (eds) D. Reidel Publishing Company, Dordrecht, Holland, p 21

    Google Scholar 

  10. Cetel AD, Duhl DN (1992) Second generation columnar grain Nickel-base superalloy. In: Antolo SD, Stusrud RW, MacKay RA, Anton L, Khan T, Kissinger RD, Klarstrom L (eds) Superalloys 1992, TMS, Warrendale, PA, USA, pp 287–296

    Google Scholar 

  11. Pollock TM, Tin S (2006) Propulsion and power, vol 22, 2, p 361

    Google Scholar 

  12. Diego Colombo (2006–2007) Nickel-based superalloys and their application in the aircraft industry. Anno accademico, Universita Deglistudi Di Trento, Italy

    Google Scholar 

  13. Caron P, Lavigne O (2011) Recent studies at onera on superalloys for single crystal turbine blades. J Aerosp Lab 3, pp 1–14

    Google Scholar 

  14. Second Generation single crystal superalloy(Developed under NIMS1/Toshiba2 collaboration), High Temperature Materials Group, Materials Engineering Laboratory (MEL), National Institute for Materials Science(NIMS), Japan, August, 2004

    Google Scholar 

  15. Li JR, Zhong ZG, Tang DZ, Liu SZ, Wei P, Wei PY, Wu ZT, Huang D, Han M (2000) A Low-cost second geneution single crystal superalloy DD6. In: Pollock TM, Kissinger RD, Bowman RR, Green KA, McLean S, Olson, Schina JJ (eds) Superalloys 2000, TMS, Warrendale, PA, USA, pp 777–783

    Google Scholar 

  16. Cetel AD, Duhl DN (1988) Second generation nickel base single crystal superalloy. In: Reichman S, lhhl DN, Maurer G, Antolovich, S, Lund C (eds) Superalloys 1988, TMS, Warrendale, PA, USA, pp 235–244

    Google Scholar 

  17. Ericson Gary L, JOM BS (2006) A new third generation, single crystal, casting superalloy 47(5):36–39

    Google Scholar 

  18. Walston S, O’Hara, KS, Ross EW, Pollock TM, Murphy WH (1996) RENE N6: third generation single crystal superalloy. In: Kissinger RD, Deye DJ, Anton DL, C&l AD, Nathal MV, Pollo TM, Woodford DA (eds) Superalloys 1996, TMS, Warrendale, PA, USA, pp 27–34

    Google Scholar 

  19. Caron P, Khan T (1996) Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Office National d’Etudeset de Recherches Aérospatiales (ONERA), BP72 - 92322, Châtillon Cedex, France

    Google Scholar 

  20. Zietara M, Ceteland A, Czyrska-Filemonowicz A (2011), Microstructure stability of 4th generation single crystal superalloy, pwa 1497, during high temperature creep deformation. Materials Transactions, vol 52, no 3, pp 336–339

    Google Scholar 

  21. Walston S, Cetel A, MacKay R, O’Hara K, Duhl D, Dreshfield R (2004) Joint development of a fourth generation single crystal superalloy. In : 10th international symposium on superalloys cosponsored by the seven springs international symposium committee. The Minerals, Metals, and Materials Society (TMS), the TMS High Temperature Alloys Committee, and ASM International Champion, PA, USA, pp 19–23

    Google Scholar 

  22. Kawagishi Kyoko, Harada Hiroshi, Sato Akihiro, Kobayashi Toshiharu (2006) JOM 58(1):43–46

    Article  Google Scholar 

  23. Sato A, Yeh AC, Kobayashi T, Yokokawa T, Harada H, Murakumo T, Zhang JX (2007) Energy materials 2(1):19–25

    Article  Google Scholar 

  24. Sato A, Harada H, Yeh A-C, Kawagishi K, Kobayashi T, Koizumi Y, Tadaharu Y, Zhang J-X (2008) A 5th generation SC superalloy with balanced high temperature properties and processability. In: Reed RC, Green KA, Caron P, Gabb, Fahrman MG, Huron ES, Wodard SA (eds) Superalloys 2008, TMS, Warrendale, PA, USA, pp 131–138

    Google Scholar 

  25. Nickel base single crystal superalloys, TMS-196, July, 2008, High temperature materials center, National Institute for Materials Science, Japan

    Google Scholar 

  26. Kawagishi K, Yeh A-C, Yokokawa T, Kobayashi T, Koizumi Y, Harada H (2012) Development of an oxidation resistant high strength sixth generation SC superalloy. In: 12th international symposium on superalloys. In: Huron ES, Reed RC, Hardy MC, Mills MJ, Montero RE, Portella PD, Telesman J (eds) TMS, Warrendale, PA, USA, pp 189–195

    Google Scholar 

  27. Ross EW (1967) Rene 100-a sigma-free turbine blade alloy. J Met 19(12):12–14

    Google Scholar 

  28. Nystrom JD, Nystrom TM, Murphy WH, Garg A (1997) Discontinuous cellular precipitation in a high-refractory nickel-base superalloy. Metall Mater Trans 28A:2443–2452

    Article  Google Scholar 

  29. Wlodek ST (1964) The structure of IN100. Trans ASM 57:110–119

    Google Scholar 

  30. Rae CMF, Reed RC (2001) The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Mater 49(10):4113–4125

    Article  Google Scholar 

  31. Darolia R, Lahrman DF, Field RD (1988) Formation of topologically closed packed phases in nickel base single crystal superalloys. TMS, Warrendale, PA, USA, pp 255–264

    Google Scholar 

  32. Agren J (1996) Calculation of phase diagrams: Calphad. Curr Opin Solid State Mater Sci 1:355–360

    Article  Google Scholar 

  33. Kattner UR (1997) Thermodynamic modeling of multicomponent phase equilibria. J Met 49(12):14–19

    Google Scholar 

  34. Saunders N, Fahrmann M, Small CJ (2000) The application of CALPHAD calculations to Ni-Based superalloys. Superalloys 2000. TMS, Warrendale, PA, USA, pp 803–811

    Chapter  Google Scholar 

  35. Wu K, Chang YA, Wang Y (2004) Simulating interdiffusion microstructuresin Ni–Al–Cr diffusion couples: a phase field approach coupled with calphad database. ScriptaMaterialia 50:1145–1150

    Google Scholar 

  36. Schilke PW (2004) Advanced gas turbine materials and coatings. Available at www.Gepower.com/prod-serv/products/tech-docs/en/downloads/ger3569.pdf

  37. Loria ED (1989) Proceedings of conference on superalloy 718—metallurgy and applications, TMS, Warrendale, PA, USA

    Google Scholar 

  38. Loria ED (1991) Proceedings of conference on superalloy 718, 625 and various derivatives. TMS, Warrendale, PA, USA

    Google Scholar 

  39. Loria ED (1994) Superalloys 718, 625, and various derivatives. The Minerals, Metals & Materials Society, Warrendale, PA, USA

    Google Scholar 

  40. Loria ED (1997) Superalloys 718, 625, 706 and various derivatives. The Minerals, Metals & Materials Society. Warrendale, PA, USA

    Google Scholar 

  41. Loria ED (2001) Proceedings of the fifth international conference on superalloys 718, 625, 706 and various derivatives. TMS, Warrendale, PA, USA

    Google Scholar 

  42. Loria ED (2005) Proceedings of sixth international symposium on superalloys 718, 625, 706 and derivatives. TMS, Warrendale, PA, USA

    Google Scholar 

  43. Furrer D, Fecht H (1999) JOM, vol 51, 1, pp 14–17

    Google Scholar 

  44. Das N, Trans. IIM, vol 63, 210, pp 265–274

    Google Scholar 

  45. Tien JK, Caulfield T (1988) Superalloys, supercomposites and superceramics. Academic Press, New York, USA

    Google Scholar 

  46. Tin S, Pollock TM, Murphy W (2001) Stabilization of thermosolutal convective instabilities in Ni-based single crystal superalloys: carbon additions and freckle formation. Metall Mater Trans 32A(7):1743–1753

    Article  Google Scholar 

  47. Tin S, Pollock TM (2004) Predicting freckle formation in single crystal Ni-base superalloys. J Mater Sci 39(24):7199–7205

    Article  Google Scholar 

  48. Beckermann C, Gu JP, Boettinger WJ (2000) Development of a freckle predictor via rayleigh number method for single-crystal superalloy castings. Metall Mater Trans 31A(10):2545–2557

    Article  Google Scholar 

  49. Wang W, Lee PD, McLean M (2003) A model of solidification microstructures in Nickel-Based superalloys: Predicting primary dendrite spacing selection. Acta Mater 51(10):2971–2987

    Article  Google Scholar 

  50. Pollock TM, Murphy WH (1996) The breakdown of solidification in high refractory nickel-base superalloys. Metall Mater Trans 27A(4):1081–1094

    Article  Google Scholar 

  51. Giamei AF, Kear BH (1970) Nature of freckles in nickel-base superalloys. Metall Trans A 1:2185–2192

    Article  Google Scholar 

  52. Copley SM, Giamei AF, Johnson SM, Hornbecker MF (1970) Origin of freckles in unidirectionally solidified castings. Metall Trans A 1(8):2193–2204

    Article  Google Scholar 

  53. Giamei AF, Tschinkel JG (1976) Liquid metal cooling—a new solidification technique. Metall Trans A 7A:1427–1434

    Article  Google Scholar 

  54. Elliott AJ, Tin S, King WT, Huang SC, Gigliotti MFX, Pollock TM (2004) Directional solidification of large superalloy castings with radiation and liquid-metal cooling: a comparative assessment. Metall Mater Trans A 35A(10):3221–3231

    Article  Google Scholar 

  55. Huron ES (1992) Serrated yielding in a nickel-base superalloy. TMS, Warrendale, PA, USA, pp 675–684

    Google Scholar 

  56. Pollock TM, Field RD (2002) Dislocations and high temperature plastic deformation of superalloy single crystals. In: Nabarro FRN, Duesbery MS (eds) Dislocations in solids, vol 11. Elsevier, Amsterdam, pp 549–618

    Google Scholar 

  57. Yoo MH (1986) ScriptaMetallurgica 20:915–920

    Article  Google Scholar 

  58. Kear BH, Wilsdorf HGF (1962) Trans Metall Soc AIME 224:382–386

    Google Scholar 

  59. Copley SM, Kear BH (1967) Trans AIME 239:984–992

    Google Scholar 

  60. Murakumo T, Kobayashi T, Koizumi Y, Harada H (2004) Creep of Ni-base single-crystal superalloys with various gamma volume fraction. Acta Mater 52(12):3737–3744

    Article  Google Scholar 

  61. Karunarante MSA, Reed RC (2003) Interdiffusion of platinum-group metals in nickel at elevated temperatures. Acta Mater 51(10):2905–2914

    Article  Google Scholar 

  62. Reed RC, Karunarantne MSA (2000) Interdiffusion in the face-centered cubic Phase of Ni–Re, Ni–Ta and Ni–W systems between 900 °C and 1300 °C. Mater Sci Eng A 281(1–2):229–233

    Google Scholar 

  63. Walston WS, Cetel A, MacKay R, O’Hara K, Duhl D, Dreshfield R, Joint development of a fourth generation single crystal superalloy. TMS, Warrendale, PA, USA, pp 15–24

    Google Scholar 

  64. Tanaka R (2000) Research and development of ultra-high temperature materials in Japan. Mater High Temp 17(4):457–464

    Article  Google Scholar 

  65. Shyam A, Torbet CJ, Jha SK, Larsen JM, Caton MJ, Szczepanski CJ, Pollock TM, Jones JW (2004) Development of ultrasonic fatigue for rapid, high temperature fatigue studies in turbine engine materials. TMS, Warrendale, PA, USA, pp 259–267

    Google Scholar 

  66. Miner RV, Gayada J, Maier RD (1982) Fatigue and creep fatigue deformation of several nickel-base superalloys at 650 °C. Metall Trans A 13A(10):1755–1765

    Article  Google Scholar 

  67. Clavel M, Pineau A (1982) Fatigue behavior of two nickel-base alloys: Experimental results on low cycle fatigue, fatigue crack propagation and substructures. Mater Sci Eng 55(2):157–171

    Article  Google Scholar 

  68. Chan KS, Hack JE, Leverant GR (1987) Fatigue crack growth in mar-m200 single crystals. Metall Trans 18A(4):581–591

    Article  Google Scholar 

  69. Antolovich SD, Lerch B (1989) Cyclic deformation, fatigue and fatigue crack propagation in Ni-base alloys. In: Tien JK, Caulfield T (eds) Superalloys, supercomposites and superceramic. Academic Press, New York, USA, pp 363–412

    Chapter  Google Scholar 

  70. Wright PK, Jain M, Cameron D (2004) High cycle fatigue in a single crystal superalloy: time dependence at elevated temperature. TMS, Warrendale, PA, pp 657–666

    Google Scholar 

  71. Crompton JS, Martin JW (1984) Crack growth in a single crystal superalloy at elevated temperature. Metall Trans A 15A:1711–1718

    Article  Google Scholar 

  72. Larsen JM, Christodoulou (2004) Using materials prognosis to maximize the utilization of complex mechanical systems. J Met 56(3):15–28

    Google Scholar 

  73. Saunders N (1995) Phil Trans R Soc Lond A 351:543–561

    Article  Google Scholar 

  74. Das N (2008) Unpublished work, DMRL, Hyderabad, India

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. R. J. H. Wanhill for many useful and critical comments. They are thankful to the Director, DMRL, for his permission to publish this present work, and DRDO for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. V. Satyanarayana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Satyanarayana, D.V.V., Eswara Prasad, N. (2017). Nickel-Based Superalloys. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2134-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2133-6

  • Online ISBN: 978-981-10-2134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics