Skip to main content
Log in

Application of machine vision for tool condition monitoring and tool performance optimization–a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Rapid tool wear is a major concern of the machining operation, affecting the tooling cost and dimensional tolerance of the components. In line with Industry 4.0, rapid tool failure can be avoided by applying cyber-physical tool condition monitoring (TCM), which detects in-process tool wear evolution using sensors or machine vision systems, determining the actual time for tool replacement. Although sensor-based TCM is quick and adaptive in monitoring tool wear progression online, it cannot detect the failure modes to show the extent of wear severity on the tool’s cutting edge. On the other hand, machine vision systems effectively detect wear mechanisms that accelerate tool failure during machining. Therefore, this paper presents the practical application of machine vision systems in TCM and tool performance optimization (TPO). The findings in this research show that digital microscopes are used to monitor wear mechanisms, complementing TPO techniques in selecting the best cutting parameters that optimize tool performance. However, such techniques are time intensive and inefficient for real-time applications. With recent advances in imaging technology and artificial intelligence, an in-process machine vision-based TCM (MV-TCM) system is receiving more attention in intelligent manufacturing due to its efficient predictive capability. However, it is still in its infancy stage, relying on classical machine learning models, which are ineffective to extract high-level features on the tool wear images for in-process failure modes detection. Therefore, this paper highlights the significance of applying artificial intelligence to enhance MV-TCM capability for online failure modes detection and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The data reviewed in this manuscript is available from the corresponding author on reasonable request.

Code availability

Not applicable.

Abbreviations

ABC:

Artificial Bee Colony

ANFIS:

Artificial neuro-fuzzy inference system

ANN:

Artificial neural network

CCD:

Central composite design

CCRD:

Central composite rotatable design

DCNN:

Deep convolutional neural network

DL:

Deep learning

DMLNN:

Deep multilayer neural network

DNN:

Deep neural network

DP:

Dynamic programming

DRL:

Deep reinforcement learning

ET:

Evolutionary techniques

GA:

Genetic algorithm

GAN:

Generative adversarial network

GCGAN:

Deep convolutional generative adversarial networks

GCN:

Graphical convolution network

GGRNN:

Gated Graph Recurrent Neural Networks

GNN:

Graphical neural network

HOSVD:

Higher-order singular value decomposition

LP:

Linear programming

ML:

Machine learning

MOEA:

Multi-objective evolutionary algorithm

MST:

Mathematical search techniques

MV-TCM:

Machine vision-based tool condition monitoring

NLP:

Nonlinear programming

NSGA:

Non-dominated sorting genetic algorithm

NSGA II:

Non-dominated sorting genetic algorithms version II

PCA:

Principle component analysis

PSO:

Particle swarm optimization

R-CNN:

Regional convolutional neural network

RBFNN:

Radial basis function neural network

RNN:

Recurrent neural network

RSM:

Response surface methodology

SVD:

Singular value decomposition

TCM:

Tool condition monitoring

TPO:

Tool process optimization

WNN:

Wavelet neural network

YOLO:

You only look once

References

  1. Khan AM, He N, Li L, Zhao W, Jamil M (2020) Analysis of productivity and machining efficiency in sustainable machining of titanium alloy. Procedia Manuf 43:111–118. https://doi.org/10.1016/j.promfg.2020.02.122

    Article  Google Scholar 

  2. Dabhade DS, Kathar DR, Kadam D (2018) Optimization of process parameters during dry turning of Inconel 625 by using Sialon Ceramic Insert D.S.Dabhade

  3. Kuntoğlu M, Sağlam H (2020) Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning. Meas J Int Meas Confed 173(October):2021. https://doi.org/10.1016/j.measurement.2020.108582

    Article  Google Scholar 

  4. Kosaraju S, Kumar MV, Sateesh N (2018) Optimization of machining parameter in turning Inconel 625. Mater Today Proc 5(2):5343–5348. https://doi.org/10.1016/j.matpr.2017.12.119

    Article  Google Scholar 

  5. Banda T, Wong KC, Farid AA, Lim CS (2021) Comparative study of temperature prediction in the machining process of Ti-6Al-4V, Inconel 718 and AISI4340 using numerical analysis. Lect Notes Mech Eng 46:579–588. https://doi.org/10.1007/978-981-15-9505-9_52

    Article  Google Scholar 

  6. Bhattacharyya P, Sengupta D, Mukhopadhyay S (2007) Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques. Mech Syst Signal Process 21(6):2665–2683. https://doi.org/10.1016/j.ymssp.2007.01.004

    Article  Google Scholar 

  7. Pontevedra V et al (2018) ScienceDirect ScienceDirect ScienceDirect Tool wear prediction in end milling of Ti-6Al-4V through Kalman tool wear prediction in end milling of Ti-6Al-4V through Kalman filter based fusion of International texture features and cutting forces filter based. Procedia Manuf 26:1459–1470. https://doi.org/10.1016/j.promfg.2018.07.095

    Article  Google Scholar 

  8. Tangjitsitcharoen S, Pongsathornwiwat N (2013) Development of chatter detection in milling processes. Int J Adv Manuf Technol 65(5–8):919–927. https://doi.org/10.1007/s00170-012-4228-7

    Article  Google Scholar 

  9. Marinescu I, Axinte D (2009) A time-frequency acoustic emission-based monitoring technique to identify workpiece surface malfunctions in milling with multiple teeth cutting simultaneously. Int J Mach Tools Manuf 49(1):53–65. https://doi.org/10.1016/j.ijmachtools.2008.08.002

    Article  Google Scholar 

  10. Shao H, Wang HL, Zhao XM (2004) A cutting power model for tool wear monitoring in milling. Int J Mach Tools Manuf 44(14):1503–1509. https://doi.org/10.1016/j.ijmachtools.2004.05.003

    Article  Google Scholar 

  11. Li X, Ouyang G, Liang Z (2008) Complexity measure of motor current signals for tool flute breakage detection in end milling. Int J Mach Tools Manuf 48(3–4):371–379. https://doi.org/10.1016/j.ijmachtools.2007.09.008

    Article  Google Scholar 

  12. Ye B, Liu J, Peng R, Xu L, Zhao X (2008) Study on fuzzy data fusion for real-time intelligent recognition of tool wear state. Key Eng Mater 375–376:626–630. https://doi.org/10.4028/www.scientific.net/kem.375-376.626

    Article  Google Scholar 

  13. Segreto T, D’Addona D, Teti R (2020) Tool wear estimation in turning of Inconel 718 based on wavelet sensor signal analysis and machine learning paradigms. Prod Eng 14(5–6):693–705. https://doi.org/10.1007/s11740-020-00989-2

    Article  Google Scholar 

  14. Kobayashi M, Nakano K (2013) “Two problems of wavelet packet transform,” Proc 2013 10th Int Conf Inf Technol New Gener ITNG 2013, no. 5, pp. 153–159. https://doi.org/10.1109/ITNG.2013.27

  15. Patel KM, Joshi SS (2006) Mechanics of machining of face-milling operation performed using a self-propelled round insert milling cutter. J Mater Process Technol 171(1):68–76. https://doi.org/10.1016/j.jmatprotec.2005.06.046

    Article  Google Scholar 

  16. Liu TI, Jolley B (2015) Tool condition monitoring (TCM) using neural networks. Int J Adv Manuf Technol 78(9–12):1999–2007. https://doi.org/10.1007/s00170-014-6738-y

    Article  Google Scholar 

  17. Gouarir A, Martínez-Arellano G, Terrazas G, Benardos P, Ratchev S (2018) “In-process tool wear prediction system based on machine learning techniques and force analysis,” Procedia CIRP 77(Hpc):501–504. https://doi.org/10.1016/j.procir.2018.08.253

  18. Wen S, Chen Z, Li C (2018) “Vision-based surface inspection system for bearing rollers using convolutional neural networks.” Appl Sci 8: 12. https://doi.org/10.3390/app8122565

  19. Ghule G, Ambhore NH, Chinchanikar S (2017) Tool condition monitoring using vibration signals during hard turning: a review. SSRN Electron J. https://doi.org/10.2139/ssrn.3101977

    Article  Google Scholar 

  20. Niu Q, An Q, Chen M, Ming W (2013) Wear mechanisms and performance of coated inserts during face milling of TC11 and TC17 alloys. Mach Sci Technol 17(3):483–495. https://doi.org/10.1080/10910344.2013.806184

    Article  Google Scholar 

  21. Ma X, Xu J, Ding W, Lv D, Fu Y (2014) Wear behavior of Ti(N, C)-Al2O3 coated cemented carbide tools during milling Ti2AlNb-based alloy. Key Eng Mater 589–590:361–365. https://doi.org/10.4028/www.scientific.net/KEM.589-590.361

    Article  Google Scholar 

  22. You Z, Gao H, Guo L, Liu Y, Li J, Li C (2022) “Machine vision based adaptive online condition monitoring for milling cutter under spindle rotation.” Mech Syst Signal Process 171. June 2021, p. 108904, 2022. https://doi.org/10.1016/j.ymssp.2022.108904

  23. Zhu K (2022) “Machine vision based smart machining system monitoring.” 267–295, 2022. https://doi.org/10.1007/978-3-030-87878-8_8

  24. Thakre AA, Lad AV, Mala K (2019) “Measurements of tool wear parameters using machine vision system.” https://doi.org/10.1155/2019/1876489

  25. Wu X, Liu Y, Zhou X, Mou A (2019) “Automatic identification of tool wear based on convolutional neural network in face milling process.” Sensors (Switzerland) 19:18. https://doi.org/10.3390/s19183817

  26. Srinivas Prashanthpai TR (2016) “A review on tool flank wear monitoring by tool condition monitoring system using various approaches,” GRD Journals-Global Res Dev J Eng 1(4):7–13. Available: https://www.grdjournals.com

  27. Mikołajczyk T, Nowicki K, Kłodowski A, Pimenov DY (2017) “Neural network approach for automatic image analysis of cutting edge wear,” Mech Syst Signal Process 88 no. July 2016, pp. 100–110. https://doi.org/10.1016/j.ymssp.2016.11.026

  28. Ambhore N, Kamble D, Chinchanikar S, Wayal V (2015) Tool condition monitoring system: a review. Mater Today Proc 2(4–5):3419–3428. https://doi.org/10.1016/j.matpr.2015.07.317

    Article  Google Scholar 

  29. You Z, Gao H, Guo L, Liu Y, Li J (2020) “On-line milling cutter wear monitoring in a wide field-of-view camera,” Wear 460–461:203479. https://doi.org/10.1016/j.wear.2020.203479

  30. Rajeev D, Dinakaran D, Sathishkumar S, Lenin AWA (2014) A review on signal acquisition methods for tool wear monitoring in turning process. Adv Mater Res 984–985:83–93. https://doi.org/10.4028/www.scientific.net/AMR.984-985.83

    Article  Google Scholar 

  31. Duan G, Chen Y-W, Sukegawa T (2010) Automatic optical flank wear measurement of microdrills using level set for cutting plane segmentation. Mach Vis Appl 21(5):667–676. https://doi.org/10.1007/s00138-010-0259-y

    Article  Google Scholar 

  32. Thakre AA, Lad AV, Mala K (2019) Measurements of tool wear parameters using machine vision system. Model Simul Eng 2019:1–10. https://doi.org/10.1155/2019/1876489

    Article  Google Scholar 

  33. Xiong G, Liu J, Avila A (2011) “Cutting tool wear measurement by using active contour model based image processing.” in 2011 IEEE Int Conf Mechatron Autom ICMA 670–675. https://doi.org/10.1109/ICMA.2011.5985741

  34. Prasad KN, Ramamoorthy B (2001) Tool wear evaluation by stereo vision and prediction by artificial neural network. J Mater Process Technol 112(1):43–52. https://doi.org/10.1016/S0924-0136(00)00896-7

    Article  Google Scholar 

  35. Devillez A, Lesko S, Mozer W (2004) Cutting tool crater wear measurement with white light interferometry. Wear 256(1–2):56–65. https://doi.org/10.1016/S0043-1648(03)00384-3

    Article  Google Scholar 

  36. Karthik A, Chandra S, Ramamoorthy B, Das S (1997) 3D tool wear measurement and visualisation using stereo imaging. Int J Mach Tools Manuf 37(11):1573–1581. https://doi.org/10.1016/S0890-6955(97)00023-0

    Article  Google Scholar 

  37. Moldovan OG, Dzitac S, Moga I, Vesselenyi T, Dzitac I (2017) Tool-wear analysis using image processing of the tool flank. Symmetry (Basel) 9(12):1–18. https://doi.org/10.3390/sym9120296

    Article  Google Scholar 

  38. ISO 8688-1 : 1989 (E) Tool life testing in milling - Part 1 : Facemilling. International Organization for Standardization 

  39. Peng R, Pang H, Jiang H, Hu Y (2020) “Study of tool wear monitoring using machine vision.” Autom Control Comput Sci 54(3):259–270. https://doi.org/10.3103/S0146411620030062

  40. Hou Q, Sun J, Lv Z, Huang P, Song G, Sun C (2019) An online tool wear detection system in dry milling based on machine vision. Int J Adv Manuf Technol 105(1–4):1801–1810. https://doi.org/10.1007/s00170-019-04367-w

    Article  Google Scholar 

  41. Ong P, Lee WK, Lau RJH (2019) Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision. Int J Adv Manuf Technol 104(1–4):1369–1379. https://doi.org/10.1007/s00170-019-04020-6

    Article  Google Scholar 

  42. Chethan YD, Ravindra HV, Krishne Gowda YT (2019) Machine-Vision-Assisted Performance Monitoring in Turning Inconel 718 Material Using Image Processing, vol. 545. Springer Singapore.

  43. Chethan YD, Ravindra HV, Krishnegowda YT (2019) Optimization of machining parameters in turning Nimonic-75 using machine vision and acoustic emission signals by Taguchi technique. Meas J Int Meas Confed 144:144–154. https://doi.org/10.1016/j.measurement.2019.05.035

    Article  Google Scholar 

  44. García-Ordás MT, Alegre-Gutiérrez E, Alaiz-Rodríguez R, González-Castro V (2018) Tool wear monitoring using an online, automatic and low cost system based on local texture. Mech Syst Signal Process 112:98–112. https://doi.org/10.1016/j.ymssp.2018.04.035

    Article  Google Scholar 

  45. Dai Y, Zhu K (2018) A machine vision system for micro-milling tool condition monitoring. Precis Eng 52:183–191. https://doi.org/10.1016/j.precisioneng.2017.12.006

    Article  Google Scholar 

  46. Dutta S, Pal SK, Sen R (2016) Progressive tool flank wear monitoring by applying discrete wavelet transform on turned surface images. Meas J Int Meas Confed 77:388–401. https://doi.org/10.1016/j.measurement.2015.09.028

    Article  Google Scholar 

  47. Dutta S, Pal SK, Sen R (2016) Tool condition monitoring in turning by applying machine vision. J Manuf Sci Eng Trans ASME 138(5):1–17. https://doi.org/10.1115/1.4031770

    Article  Google Scholar 

  48. Li L, An Q (2016) An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis. Meas J Int Meas Confed 79:44–52. https://doi.org/10.1016/j.measurement.2015.10.029

    Article  Google Scholar 

  49. Loizou J, Tian W, Robertson J, Camelio J (2015) Automated wear characterization for broaching tools based on machine vision systems. J Manuf Syst 37:558–563. https://doi.org/10.1016/j.jmsy.2015.04.005

    Article  Google Scholar 

  50. Datta A, Dutta S, Pal SK, Sen R (2013) Progressive cutting tool wear detection from machined surface images using Voronoi tessellation method. J Mater Process Technol 213(12):2339–2349. https://doi.org/10.1016/j.jmatprotec.2013.07.008

    Article  Google Scholar 

  51. Zhang C, Zhang J (2013) On-line tool wear measurement for ball-end milling cutter based on machine vision. Comput Ind 64(6):708–719. https://doi.org/10.1016/j.compind.2013.03.010

    Article  Google Scholar 

  52. Shahabi HH, Ratnam MM (2009) Assessment of flank wear and nose radius wear from workpiece roughness profile in turning operation using machine vision. Int J Adv Manuf Technol 43(1–2):11–21. https://doi.org/10.1007/s00170-008-1688-x

    Article  Google Scholar 

  53. Liang YT, Chiou YC (2006) “An effective drilling wear measurement based on visual inspection technique,” in Proceed 9th Joint Conf Inform Sci JCIS. https://doi.org/10.2991/jcis.2006.267

  54. Lanzetta M (2001) A new flexible high-resolution vision sensor for tool condition monitoring. J Mater Process Technol 119(1–3):73–82. https://doi.org/10.1016/S0924-0136(01)00878-0

    Article  Google Scholar 

  55. Kerr D, Pengilley J, Garwood R (2006) Assessment and visualisation of machine tool wear using computer vision. Int J Adv Manuf Technol 28(7–8):781–791. https://doi.org/10.1007/s00170-004-2420-0

    Article  Google Scholar 

  56. Castejón M, Alegre E, Barreiro J, Hernández LK (2007) On-line tool wear monitoring using geometric descriptors from digital images. Int J Mach Tools Manuf 47(12–13):1847–1853. https://doi.org/10.1016/j.ijmachtools.2007.04.001

    Article  Google Scholar 

  57. Schmitt R, Cai Y, Pavim A (2012) Machine vision system for inspecting flank wear on cutting tools. ACEEE Int J Control Syst Instrum 03(01):27–31. 01.IJCSI.03.01.13

    Google Scholar 

  58. Halim NHA, Haron CHC, Ghani JA, Azhar MF (2019) “Tool wear and chip morphology in high-speed milling of hardened Inconel 718 under dry and cryogenic CO 2 conditions.” Wear 426–427, 1683–1690. https://doi.org/10.1016/j.wear.2019.01.095

  59. Liao YS, Lin HM, Wang JH (2008) Behaviors of end milling Inconel 718 superalloy by cemented carbide tools. J Mater Process Technol 201(1–3):460–465. https://doi.org/10.1016/j.jmatprotec.2007.11.176

    Article  Google Scholar 

  60. Jahanbakhsh M, Akhavan Farid A, Lotfi M (2018) “Optimal flank wear in turning of Inconel 625 super-alloy using ceramic tool.” Proc Inst Mech Eng Part B J Eng Manuf 232(2):208–216. https://doi.org/10.1177/0954405416640698

  61. Youssef YA, Beauchamp Y, Thomas M (1994) Comparison of a full factorial experiment to fractional and Taguchi designs in a lathe dry turning operation. Comput Ind Eng 27(1–4):59–62. https://doi.org/10.1016/0360-8352(94)90237-2

    Article  Google Scholar 

  62. Lin TR (2002) Optimisation technique for face milling stainless steel with multiple performance characteristics. Int J Adv Manuf Technol 19(5):330–335. https://doi.org/10.1007/s001700200021

    Article  Google Scholar 

  63. Shaji S, Radhakrishnan V (2003) Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method. J Mater Process Technol 141(1):51–59. https://doi.org/10.1016/S0924-0136(02)01112-3

    Article  Google Scholar 

  64. Mukherjee I, Ray PK (2006) A review of optimization techniques in metal cutting processes. Comput Ind Eng 50(1–2):15–34. https://doi.org/10.1016/j.cie.2005.10.001

    Article  Google Scholar 

  65. Refinery NP, Braimah MN, Odejobi OJ (2016) Utilization of response surface methodology ( RSM ) in the optimization of crude oil refinery. J Multidiscip Eng Sci Technol 3(3):4361–4369

    Google Scholar 

  66. Montgomery DC (1990) “Using fractional factorial designs for robust process development.” Qual Eng 3(2):193–205. https://doi.org/10.1080/08982119008918849

  67. Natarajan U, Periyanan PR, Yang SH (2011) Multiple-response optimization for micro-endmilling process using response surface methodology. Int J Adv Manuf Technol 56(1–4):177–185. https://doi.org/10.1007/s00170-011-3156-2

    Article  Google Scholar 

  68. Farid AA, Sharif S, Ashrafi SA, Idris MH (2013) “Statistical analysis, modeling, and optimization of thrust force and surface roughness in high-speed drilling of Al-Si alloy.” Proc Inst Mech Eng Part B J Eng Manuf 227(6):808–820. https://doi.org/10.1177/0954405412471280

  69. Sharif S, Akhavan Farid A, Idris MH (2012) “Tool life prediction model of uncoated carbide tool in high speed drilling of Al-Si alloy using response surface methodology,” Int. J. Surf. Sci. Eng 6(1–2):112–121. https://doi.org/10.1504/IJSURFSE.2012.046847

  70. Davoodi B, Eskandari B (2015) Tool wear mechanisms and multi-response optimization of tool life and volume of material removed in turning of N-155 iron-nickel-base superalloy using RSM. Meas J Int Meas Confed 68:286–294. https://doi.org/10.1016/j.measurement.2015.03.006

    Article  Google Scholar 

  71. Gupta R, Batra JL, Lal GK (1995) Determination of optimal subdivision of depth of cut in multipass turning with constraints. Int J Prod Res 33(9):2555–2565. https://doi.org/10.1080/00207549508904831

    Article  MATH  Google Scholar 

  72. Sekhon GS (1982) Application of dynamic programming to multi-stage batch machining. Comput Des 14(3):157–159. https://doi.org/10.1016/0010-4485(82)90330-X

    Article  MathSciNet  Google Scholar 

  73. Goldberg D (1989) “Genetic algorithms in search, optimization, and machine learning,” Choice Rev Online 27(02):27–0936–27–0936. https://doi.org/10.5860/choice.27-0936

  74. Prasad CF, Jayabal S, Natarajan U (2007) Optimization of tool wear in turning using genetic algorithm. Indian J Eng Mater Sci 14(6):403–407

    Google Scholar 

  75. Gao DQ, Li ZY, Mao ZY (2011) Study of high-speed machining parameters on nickel-based alloy GH2132. Adv Mater Res 189–193:3142–3147. https://doi.org/10.4028/www.scientific.net/AMR.189-193.3142

    Article  Google Scholar 

  76. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  77. Sen B, Mia M, Mandal UK, Mondal SP (2019) GEP- and ANN-based tool wear monitoring: a virtually sensing predictive platform for MQL-assisted milling of Inconel 690. Int J Adv Manuf Technol 105(1–4):395–410. https://doi.org/10.1007/s00170-019-04187-y

    Article  Google Scholar 

  78. Jamshidi S et al (2019) Combining gene expression programming and genetic algorithm as a powerful hybrid modeling approach for pear rootstocks tissue culture media formulation. Plant Methods 15(1):1–18. https://doi.org/10.1186/s13007-019-0520-y

    Article  Google Scholar 

  79. Horn J, Nafpliotis N, Goldberg DE (1994) “Niched Pareto genetic algorithm for multiobjective optimization.” IEEE Conf Evol Comput Proc 1:82–87. https://doi.org/10.1109/icec.1994.350037

  80. Bouzakis KD et al (2008) Correlation of the impact resistance of variously doped CrAlN PVD coatings with their cutting performance in milling aerospace alloys. Surf Coatings Technol 203(5–7):781–785. https://doi.org/10.1016/j.surfcoat.2008.08.009

    Article  Google Scholar 

  81. Mahdavinejad R (2010) Optimizing of turning parameters using multi-objective genetic algorithm. Adv Mater Res 118–120:359–363. https://doi.org/10.4028/www.scientific.net/AMR.118-120.359

    Article  Google Scholar 

  82. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248. https://doi.org/10.1162/evco.1994.2.3.221

    Article  Google Scholar 

  83. Knowles J, Corne D (1999) “The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation.” Proc 1999 Congr Evol Comput CEC (1):98–105. https://doi.org/10.1109/CEC.1999.781913

  84. Zitzler E, Thiele L (1998) “Multiobjective optimization using evolutionary algorithms - a comparative case study,” Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 1498 LNCS, 292–301. https://doi.org/10.1007/bfb0056872

  85. Yusoff Y, Zain AM, Haron H, Bahru J (2016) “Akademia Baru Experimental Study of Genetic Algorithm Optimization on WC / Co Material Machining Akademia Baru,” 21(1):14–26

  86. Yadav RN, Yadava V (2013) “Multiobjective optimization of slotted electrical discharge abrasive grinding of metal matrix composite using artificial neural network and nondominated sorting genetic algorithm,” Proc Inst Mech Eng Part B J Eng Manuf 227(10):1442–1452. https://doi.org/10.1177/0954405413489294

  87. Bouacha K, Terrab A (2016) Hard turning behavior improvement using NSGA-II and PSO-NN hybrid model. Int J Adv Manuf Technol 86(9–12):3527–3546. https://doi.org/10.1007/s00170-016-8479-6

    Article  Google Scholar 

  88. Jin Y (2005) A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput 9(1):3–12. https://doi.org/10.1007/s00500-003-0328-5

    Article  Google Scholar 

  89. Jin Y, Olhofer M, Sendhoff B (2002) A framework for evolutionary optimization with approximate fitness functions. IEEE Trans Evol Comput 6(5):481–494. https://doi.org/10.1109/TEVC.2002.800884

    Article  Google Scholar 

  90. Župerl U, Čuš F, Gecevska V (2007) Optimization of the characteristic parameters in milling using the PSO evolution technique. Stroj Vestnik/Journal Mech Eng 53(6):354–368

    Google Scholar 

  91. Yusup N, Zain AM, Hashim SZM (2012) Evolutionary techniques in optimizing machining parameters: review and recent applications (2007–2011). Expert Syst Appl 39(10):9909–9927. https://doi.org/10.1016/j.eswa.2012.02.109

    Article  Google Scholar 

  92. Rao RV, Pawar PJ, Shankar R (2008) “Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm,” Proc Inst Mech Eng Part B J Eng Manuf 222(8):949–958. https://doi.org/10.1243/09544054JEM1158

  93. Li JG, Yao YX, Gao D, Liu CQ, Yuan ZJ (2008) Cutting parameters optimization by using particle swarm optimization (PSO). Appl Mech Mater 10–12(January):879–883. https://doi.org/10.4028/www.scientific.net/AMM.10-12.879

    Article  Google Scholar 

  94. Huang H, Li A, Lin X (2007) “Application of PSO-based wavelet neural network in tool wear monitoring,” Proc IEEE Int Conf Autom Logist ICAL 2(3):2813–2817. https://doi.org/10.1109/ICAL.2007.4339060

  95. Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014. https://doi.org/10.1007/s10845-010-0393-4

    Article  Google Scholar 

  96. Akay B, Karaboga D (2009) “Parameter tuning for the Artificial Bee Colony algorithm BT - computational collective intelligence. Semantic Web, Social Networks and Multiagent Systems,” 608–619

  97. Samanta S, Chakraborty S (2011) Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng Appl Artif Intell 24(6):946–957. https://doi.org/10.1016/j.engappai.2011.03.009

    Article  Google Scholar 

  98. Lin JT, Bhattacharyya D, Kecman V (2003) Multiple regression and neural networks analyses in composites machining. Compos Sci Technol 63(3–4):539–548. https://doi.org/10.1016/S0266-3538(02)00232-4

    Article  Google Scholar 

  99. Thangavel P, Selladurai V, Shanmugam R (2006) “Application of response surface methodology for predicting flank wear in turning operation,” Proc Inst Mech Eng Part B J Eng Manuf 220(6):997–1003. https://doi.org/10.1243/09544054JEM460SC

  100. Gupta AK (2010) Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression. Int J Prod Res 48(3):763–778. https://doi.org/10.1080/00207540802452132

    Article  Google Scholar 

  101. Berkani S, Bouzid L, Bensouilah H, Yallese MA, Girardin F, Mabrouki T (2015) “Modeling and optimization of tool wear and surface roughness in turning of austenitic stainless steel using response surface methodology Abstract.” 1–16

  102. Banda T, Ho KY, Akhavan Farid A, Lim CS (2021) “Characterization of tool wear mechanisms and failure modes of TiAlN-NbN coated carbide inserts in face milling of Inconel 718.” J Mater Eng Perform 10. https://doi.org/10.1007/s11665-021-06301-2

  103. Petri KL, Billo RE, Bidanda B (1998) A neural network process model for abrasive flow machining operations. J Manuf Syst 17(1):52–64. https://doi.org/10.1016/S0278-6125(98)80009-5

    Article  Google Scholar 

  104. Rumelhart DE, Hintont GE (2019) Learning representations by back-propagating errors. Cogn Model 2:3–6. https://doi.org/10.7551/mitpress/1888.003.0013

    Article  Google Scholar 

  105. Sathyanarayanan G, Joseph Lin I, Chen MK (1992) “Neural network modelling and multiobjective optimization of creep feed grinding of superalloys,” Int J Prod Res 30(10):2421–2438. https://doi.org/10.1080/00207549208948164

  106. Jain RK, Jain VK, Kalra PK (1999) Modelling of abrasive flow machining process: a neural network approach. Wear 231(2):242–248. https://doi.org/10.1016/S0043-1648(99)00129-5

    Article  Google Scholar 

  107. Geerdes WM, Alvarado MÁT, Cabrera-Ríos M, Cavazos A (2008) An application of physics-based and artificial neural networks-based hybrid temperature prediction schemes in a hot strip mill. J Manuf Sci Eng Trans ASME 130(1):0145011–0145015. https://doi.org/10.1115/1.2783223

    Article  Google Scholar 

  108. Arun Ramnath R, Thyla PR, Mahendra Kumar N, Aravind S (2018) “Optimization of machining parameters of composites using multi-attribute decision-making techniques: a review.” J Reinforced Plastics Compos 37(2):77–89. https://doi.org/10.1177/0731684417732840

  109. Thyagharajan KK, Vignesh T (2019) Soft computing techniques for land use and land cover monitoring with multispectral remote sensing images: a review. Archives of Computational Methods in Engineering 26(2):275–301. https://doi.org/10.1007/s11831-017-9239-y

    Article  Google Scholar 

  110. Zadeh LA (1973) “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans Syst Man Cybern SMC-3, 1:28–44. https://doi.org/10.1109/TSMC.1973.5408575

  111. Shin YC, Vishnupad P (1996) Neuro-fuzzy control of complex manufacturing processes. Int J Prod Res 34(12):3291–3309. https://doi.org/10.1080/00207549608905091

    Article  MATH  Google Scholar 

  112. Ip WLR (1998) A fuzzy basis material removal optimization strategy for sculptured surface machining using ball-nosed cutters. Int J Prod Res 36(9):2553–2571. https://doi.org/10.1080/002075498192698

    Article  MathSciNet  MATH  Google Scholar 

  113. Al-Refaie A, Chen T, Al-Athamneh R, Wu HC (2016) Fuzzy neural network approach to optimizing process performance by using multiple responses. J Ambient Intell Humaniz Comput 7(6):801–816. https://doi.org/10.1007/s12652-015-0340-5

    Article  Google Scholar 

  114. Shankar S, Mohanraj T, Rajasekar R (2019) Prediction of cutting tool wear during milling process using artificial intelligence techniques. Int J Comput Integr Manuf 32(2):174–182. https://doi.org/10.1080/0951192X.2018.1550681

    Article  Google Scholar 

  115. Huang W et al (2021) “Tool wear in ultrasonic vibration–assisted drilling of CFRP: a comparison with conventional drilling,” Int J Adv Manuf Technol 1809–1820. https://doi.org/10.1007/s00170-021-07198-w

  116. Polvorosa R, Suárez A, López de Lacalle LN, Cerrillo I, Wretland A, Veiga F (2017) Tool wear on nickel alloys with different coolant pressures: Comparison of Alloy 718 and Waspaloy. J Manuf Process 26:44–56. https://doi.org/10.1016/j.jmapro.2017.01.012

    Article  Google Scholar 

  117. Gong F, Zhao J, Pang J (2017) Evolution of cutting forces and tool failure mechanisms in intermittent turning of hardened steel with ceramic tool. Int J Adv Manuf Technol 89(5–8):1603–1613. https://doi.org/10.1007/s00170-016-9178-z

    Article  Google Scholar 

  118. Zhuang K, Zhu D, Zhang X, Ding H (2014) Notch wear prediction model in turning of Inconel 718 with ceramic tools considering the in fl uence of work hardened layer. Wear 313(1–2):63–74. https://doi.org/10.1016/j.wear.2014.02.007

    Article  Google Scholar 

  119. Capasso S et al (2019) “A novel method of assessing and predicting coated cutting tool wear during Inconel DA 718 turning,” Wear 202949. https://doi.org/10.1016/j.wear.2019.202949

  120. Yadav RK, Abhishek K, Mahapatra SS (2015) Simulation modelling practice and theory a simulation approach for estimating flank wear and material removal rate in turning of Inconel 718. Stimul Model Pract THEORY 52:1–14. https://doi.org/10.1016/j.simpat.2014.12.004

    Article  Google Scholar 

  121. Lu X et al (2018) “The fl ank wear prediction in micro-milling Inconel 718.” https://doi.org/10.1108/ILT-01-2018-0031

  122. Ezugwu EO, Fadare DA, Bonney J, Da Silva RB, Sales WF (2005) “Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network.” 45:1375–1385. https://doi.org/10.1016/j.ijmachtools.2005.02.004

  123. Leone C, Addona DD, Teti R (2011) CIRP Journal of Manufacturing Science and Technology Tool wear modelling through regression analysis and intelligent methods for nickel base alloy machining. CIRP J Manuf Sci Technol 4(3):327–331. https://doi.org/10.1016/j.cirpj.2011.03.009

    Article  Google Scholar 

  124. Kaya B, Oysu C, Ertunc HM (2011) Advances in Engineering Software Force-torque based on-line tool wear estimation system for CNC milling of Inconel 718 using neural networks. Adv Eng Softw 42(3):76–84. https://doi.org/10.1016/j.advengsoft.2010.12.002

    Article  Google Scholar 

  125. Chinchanikar S, Choudhury SK (2013) Wear behaviors of single-layer and multi-layer coated carbide inserts in high speed machining of hardened AISI 4340 steel. J Mech Sci Technol 27(5):1451–1459. https://doi.org/10.1007/s12206-013-0325-2

    Article  Google Scholar 

  126. Bandal ON, Ghodekar OY, Bhanage SS, Gorwadkar PM, Kulkarni AP, Shaikh FA (2016) Investigation of cutting temperature distribution during hard turning of AISI 4340: a numerical approach. Int J Mod Trends Eng Res 3(8):196–203. https://doi.org/10.21884/ijmter.2016.3024.oyzno

    Article  Google Scholar 

  127. Patil NG, Asem A, Pawade RS, Thakur DG, Brahmankar PK (2014) “New production technologies in aerospace industry - 5th machining innovations conference (MIC 2014) comparative study of high speed machining of inconel 718 in dry condition and by using compressed cold carbon dioxide gas as coolant,” Procedia CIRP, vol. 24, no. C, pp. 86–91, 2014. https://doi.org/10.1016/j.procir.2014.08.009

  128. Verma N, Vettivel SC, Rao VS, Zafar S (2019) “Processing, tool wear measurement using machine vision system and optimization of machining parameters of boron carbide and rice husk ash reinforced AA 7075 hybrid composite,” Mater. Res. Express, 6: 8. https://doi.org/10.1088/2053-1591/ab2509

  129. Murua M, Suárez A, De Lacalle LNL, Santana R, Wretland A (2017) “Feature extraction-based prediction of tool wear of Inconel 718 in face turning.” 1–8. https://doi.org/10.1784/insi.2017.59.1.XXX

  130. Dutta S, Datta A, Das Chakladar N, Pal SK, Mukhopadhyay S, Sen R (2012) “Detection of tool condition from the turned surface images using an accurate grey level co-occurrence technique.” Precis Eng 36(3):458–466. https://doi.org/10.1016/j.precisioneng.2012.02.004

  131. Dutta S, Pal SK, Mukhopadhyay S, Sen R (2013) “Application of digital image processing in tool condition monitoring: a review,” CIRP J Manufac Sci Technol 6(3) Elsevier, 212–232. https://doi.org/10.1016/j.cirpj.2013.02.005

  132. Lins RG, Guerreiro B, Marques De Araujo PR, Schmitt R (2020) In-process tool wear measurement system based on image analysis for CNC drilling machines. IEEE Trans Instrum Meas 69(8):5579–5588. https://doi.org/10.1109/TIM.2019.2961572

    Article  Google Scholar 

  133. Sahu S, Choudhury BB (2015) Optimization of surface roughness using Taguchi methodology & prediction of tool wear in hard turning tools. Mater Today Proc 2(4–5):2615–2623. https://doi.org/10.1016/j.matpr.2015.07.218

    Article  Google Scholar 

  134. Mohanty A, Gangopadhyay S, Thakur A (2016) On applicability of multilayer coated tool in dry machining of aerospace grade stainless steel. Mater Manuf Process 31(7):869–879. https://doi.org/10.1080/10426914.2015.1070413

    Article  Google Scholar 

  135. Sun S, Brandt M, Dargusch MS (2017) “Effect of tool wear on chip formation during dry machining of Ti-6Al-4V alloy, part 2: effect of tool failure modes,” Proc Inst Mech Eng Part B J Eng Manuf 231(9):1575–1586. https://doi.org/10.1177/0954405415600011

  136. Qin S, Li Z, Guo G, An Q, Chen M, Ming W (2016) “Analysis of minimum quantity lubrication (MQL) for different coating tools during turning of TC11 titanium alloy,” Materials (Basel) 9:10. https://doi.org/10.3390/ma9100804

  137. Kuram E (2017) Nose radius and cutting speed effects during milling of AISI 304 material. Mater Manuf Process 32(2):185–192. https://doi.org/10.1080/10426914.2016.1198019

    Article  Google Scholar 

  138. Li A, Zhao J, Hou G (2017) Effect of cutting speed on chip formation and wear mechanisms of coated carbide tools when ultra-high-speed face milling titanium alloy Ti-6Al-4V. Adv Mech Eng 9(7):1–13. https://doi.org/10.1177/1687814017713704

    Article  Google Scholar 

  139. Abdul Sani AS, Rahim EA, Sharif S, Sasahara H (2019) “The influence of modified vegetable oils on tool failure mode and wear mechanisms when turning AISI 1045,” Tribol Int 129:347–362. https://doi.org/10.1016/j.triboint.2018.08.038

  140. Liang X, Liu Z, Wang B (2020) Multi-pattern failure modes and wear mechanisms of WC-Co tools in dry turning Ti–6Al–4V. Ceram Int 46(15):24512–24525. https://doi.org/10.1016/j.ceramint.2020.06.238

    Article  Google Scholar 

  141. Ming W, Huang X, Ji M, Xu J, Zou F, Chen M (2021) Analysis of cutting responses of Sialon ceramic tools in high-speed milling of FGH96 superalloys. Ceram Int 47(1):149–156. https://doi.org/10.1016/j.ceramint.2020.08.118

    Article  Google Scholar 

  142. Sandkiv (2019) “Milling formulas and definition. https://www.sandvik.coromant.com/en-gb/knowledge/machining-formulas-definitions/pages/milling.aspx. (accessed 08 Aug 2020)

  143. Chethan YD, Ravindra HV, Gowda YTK, Kumar GDM (2014) Parametric optimization in drilling EN-8 tool steel and drill wear monitoring using machine vision applied with Taguchi method. Procedia Mater Sci 5:1442–1449. https://doi.org/10.1016/j.mspro.2014.07.463

    Article  Google Scholar 

  144. Ponce MB, Illana IDS, Fernandez-Vidal SR, Gomez JS (2018) “Experimental parametric model for adhesion wear measurements in the dry turning of an AA2024 alloy,” Materials (Basel) 11:9. https://doi.org/10.3390/ma11091598

  145. Landini G, Randell DA, Fouad S, Galton A (2017) Automatic thresholding from the gradients of region boundaries. J Microsc 265(2):185–195. https://doi.org/10.1111/jmi.12474

    Article  Google Scholar 

  146. Song XY, Zhao J (2010) Failure mechanisms of carbide tool in high speed milling of Inconel 718. Adv Mater Res 97–101:1920–1924. https://doi.org/10.4028/www.scientific.net/AMR.97-101.1920

    Article  Google Scholar 

  147. Zheng G, Zhao J, Li A, Cui X, Zhou Y (2013) Failure mechanisms of graded ceramic tool in ultra high speed dry milling of Inconel 718. Int J Precis Eng Manuf 14(6):943–949. https://doi.org/10.1007/s12541-013-0124-9

    Article  Google Scholar 

  148. Li C, Diao Y, Ma H, Li Y (2008) “A statistical PCA method for face recognition.” Proc. - 2008 2nd Int Symp Intell Inf Technol Appl IITA 2008 3:376–380. https://doi.org/10.1109/IITA.2008.71

  149. Meng J, Yang Y (2012) Symmetrical two-dimensional pca with image measures in face recognition. Int J Adv Robot Syst 9:1–10. https://doi.org/10.5772/54014

    Article  Google Scholar 

  150. Karamizadeh S, Abdullah SM, Manaf AA, Zamani M, Hooman A (2013) An overview of principal component analysis. J Signal Inf Process 04(03):173–175. https://doi.org/10.4236/jsip.2013.43b031

    Article  Google Scholar 

  151. Asadi S, Rao CDVS, Saikrishna V (2010) A comparative study of face recognition with principal component analysis and cross-correlation technique. Int J Comput Appl 10(8):17–21. https://doi.org/10.5120/1502-2019

    Article  Google Scholar 

  152. Phillips PJ et al (2005) “Overview of the face recognition grand challenge.” Proc. - 2005 IEEE Comput Soc Conf Comput Vis Pattern Recognition CVPR 2005, I 947–954. https://doi.org/10.1109/CVPR.2005.268

  153. Konstantinides K, Natarajan B, Yovanof GS (1997) Noise estimation and filtering using block-based singular value decomposition. IEEE Trans Image Process 6(3):479–483. https://doi.org/10.1109/83.557359

    Article  Google Scholar 

  154. Sadek RA (2012)“SVD based image processing applications: state of the art, contributions and research challenges.” https://www.ijacsa.thesai.org

  155. Andrews HC, Patterson CL (1976) Singular value decompositions and digital image processing. IEEE Trans Acoust 24(1):26–53. https://doi.org/10.1109/TASSP.1976.1162766

    Article  Google Scholar 

  156. Sadek RA (2012) SVD based image processing applications: state of the art, contributions and research challenges. Int J Adv Comput Sci Appl 3(7):26–34

    Google Scholar 

  157. Zhang M, Ding C (2013) “Robust tucker tensor decomposition for effective image representation.” Proc IEEE Int Conf Comput Vis 2448–2455. https://doi.org/10.1109/ICCV.2013.304

  158. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  159. Serin G, Sener B, Ozbayoglu AM, Unver HO (2020) Review of tool condition monitoring in machining and opportunities for deep learning. Int J Adv Manuf Technol 109(3–4):953–974. https://doi.org/10.1007/s00170-020-05449-w

    Article  Google Scholar 

  160. Wang Y, Dai W, Xiao J (2018) “Detection for cutting tool wear based on convolution neural networks,” in Proceed - 12th Inte Conf Reliability Maintainability, and Safety ICRMS 297–300. https://doi.org/10.1109/ICRMS.2018.00063

  161. Banda T, Jie BYW, Farid AA, Lim CS (2022) “Machine vision and convolutional neural networks for tool wear identification and classification” 737–747. https://doi.org/10.1007/978-981-33-4597-3_66

  162. Anderson M, Patwa R, Shin YC (2006) Laser-assisted machining of Inconel 718 with an economic analysis. Int J Mach Tools Manuf 46(14):1879–1891. https://doi.org/10.1016/j.ijmachtools.2005.11.005

    Article  Google Scholar 

  163. Dandekar CR, Shin YC, Barnes J (2010) International Journal of Machine Tools & Manufacture Machinability improvement of titanium alloy ( Ti – 6Al – 4V ) via LAM and hybrid machining. Int J Mach Tools Manuf 50(2):174–182. https://doi.org/10.1016/j.ijmachtools.2009.10.013

    Article  Google Scholar 

  164. Radford A, Metz L, Chintala S. (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. https://doi.org/10.48550/arXiv.1511.06434

  165. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Advances in neural information processing systems 27

  166. Ledig C et al (2017) “Photo-realistic single image super-resolution using a generative adversarial network.” Proc - 30th IEEE Conf Comput Vis Pattern Recognition CVPR 105–114. https://doi.org/10.1109/CVPR.2017.19

  167. Lai WS, Bin Huang J, Ahuja N, Yang MH (2017) “Deep laplacian pyramid networks for fast and accurate super-resolution.” Proc - 30th IEEE Conf Comput Vis Pattern Recogn CVPR 5835–5843. https://doi.org/10.1109/CVPR.2017.618

  168. Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640–651. https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  169. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2015) “Semantic image segmentation with deep convolutional nets and fully connected CRFs.” 3rd Int Conf Learn Represent ICLR 2015 - Conf Track Proc 40(4):834–848

  170. Noh H, Hong S, Han B (2015) “Learning deconvolution network for semantic segmentation.” Proc IEEE Int Conf Comput Vis Inter 1520–1528. https://doi.org/10.1109/ICCV.2015.178.

  171. Badrinarayanan V, Handa A, Cipolla R (2015) “SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling.” http://arxiv.org/abs/1505.07293.

  172. Hariharan B, Arbeláez P, Girshick R, Malik J (2015) “Hypercolumns for object segmentation and fine-grained localization.” Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 07–12-June, 447–456. https://doi.org/10.1109/CVPR.2015.7298642.

  173. Hariharan B, Arbeláez P, Girshick R, Malik J (2014) “Simultaneous detection and segmentation,” Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 8695 LNCS 7:297–312. https://doi.org/10.1007/978-3-319-10584-0_20

  174. Girshick R, Donahue J, Darrell T, Malik J (2016) Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans Pattern Anal Mach Intell 38(1):142–158. https://doi.org/10.1109/TPAMI.2015.2437384

    Article  Google Scholar 

  175. He K, Zhang K, Ren S, Sun J (2016) “Deep residual learning for image recognition.” in Proceed IEEE Comp Soc Conf Comp Vis Patt Recog 2016-Decem, 770–778. https://doi.org/10.1109/CVPR.2016.90

  176. Mahdianpari M, Salehi B, Rezaee M, Mohammadimanesh F, Zhang Y (2018) “Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery.” Remote Sens 10:7. https://doi.org/10.3390/rs10071119

  177. Simonyan K, Zisserman A (2015) “Very deep convolutional networks for large-scale image recognition.” 3rd Int Conf Learn Represent ICLR 2015 - Conf Track Proc 1–14

  178. Szegedy C et al (2015) “Going deeper with convolutions.” Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 07–12-June, 1–9. https://doi.org/10.1109/CVPR.2015.7298594.

  179. Krizhevsky A, Sutskever I, Hinton GE (2020) “ImageNet classification with deep convolutional neural networks.” http://code.google.com/p/cuda-convnet/

  180. He K, Zhang X, Ren S, Sun J (2016) “Deep residual learning for image recognition.” Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 770–778. https://doi.org/10.1109/CVPR.2016.90

  181. Girshick R, Donahue J, Darrell T, Malik J (2014) “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 580–587. https://doi.org/10.1109/CVPR.2014.81

  182. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2014) “Overfeat: integrated recognition, localization and detection using convolutional networks.” 2nd Int Conf Learn Represent ICLR 2014 - Conf Track Proc

  183. Uijlings JRR, Van De Sande KEA, Gevers T, Smeulders AWM (2013) Selective search for object recognition. Int J Comput Vis 104(2):154–171. https://doi.org/10.1007/s11263-013-0620-5

    Article  Google Scholar 

  184. Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  185. Redmon J, Divvala S, Girshick R, Farhadi A (2016) “You only look once: unified, real-time object detection.” Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 779–788. https://doi.org/10.1109/CVPR.2016.91

  186. Barnes C, Shechtman E, Finkelstein A, Goldman DB (2009) “PatchMatch: a randomized correspondence algorithm for structural image editing.” ACM Trans Graph 28:3. https://doi.org/10.1145/1531326.1531330

  187. Van Den Oord A, Kalchbrenner N, Kavukcuoglu K (2016) “Pixel recurrent neural networks.” 33rd Int Conf Mach Learn ICML 4:2611–2620

  188. Van Den Oord A, Kalchbrenner N, Vinyals O, Espeholt L, Graves A, Kavukcuoglu K (2016) “Conditional image generation with PixelCNN decoders.” Adv Neural Inf Process Syst 4797–4805

  189. Liu G, Reda FA, Shih KJ, Wang TC, Tao A, Catanzaro B (2018) “Image inpainting for irregular holes using partial convolutions,” Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 11215 LNCS 89–105. https://doi.org/10.1007/978-3-030-01252-6_6

  190. Cheng JY, Chen F, Alley MT, Pauly JM, Vasanawala SS (2018) “Highly scalable image reconstruction using deep neural networks with bandpass filtering.” 1–9. http://arxiv.org/abs/1805.03300.

  191. Radford A, Metz L, Chintala S (2016) “Unsupervised representation learning with deep convolutional generative adversarial networks.” 4th Int Conf Learn Represent ICLR 2016 - Conf Track Proc 1–16

  192. Zhu JY, Park T, Isola P, Efros AA (2017) “Unpaired image-to-image translation using cycle-consistent adversarial networks.” Proc IEEE Int Conf Comput Vis 2017-Octob, pp. 2242–2251. https://doi.org/10.1109/ICCV.2017.244

  193. Qiu C et al (2022) “Semi-supervised graph convolutional network to predict position- and speed-dependent tool tip dynamics with limited labeled data.” Mech Syst Signal Process 164:108225. https://doi.org/10.1016/j.ymssp.2021.108225

  194. Baldassarre F, Smith K, Sullivan J, Azizpour H (2020) “Explanation-based weakly-supervised learning of visual relations with graph networks.” Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 12373 LNCS 612–630. https://doi.org/10.1007/978-3-030-58604-1_37

  195. Jia Y et al (2014) “Caffe,” 675–678. https://doi.org/10.1145/2647868.2654889

  196. Cao Z, Hidalgo G, Simon T, Wei SE, Sheikh Y (2021) OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans Pattern Anal Mach Intell 43(1):172–186. https://doi.org/10.1109/TPAMI.2019.2929257

    Article  Google Scholar 

  197. Zhao ZQ, Zheng P, Xu ST, Wu X (2019) Object detection with deep learning: a review. IEEE Trans Neural Networks Learn Syst 30(11):3212–3232. https://doi.org/10.1109/TNNLS.2018.2876865

    Article  Google Scholar 

  198. Mateus A, Ribeiro D, Miraldo P, Nascimento JC (2019) Efficient and robust pedestrian detection using deep learning for human-aware navigation. Rob Auton Syst 113:23–37. https://doi.org/10.1016/j.robot.2018.12.007

    Article  Google Scholar 

  199. Sutton RS, Barto AG (2012) “Reinforcement learning: An Introduction Second edition.” Learning 3(9):322. https://books.google.com/books?id=CAFR6IBF4xYC&pgis=1%5Cn, http://incompleteideas.net/sutton/book/the-book.html%5Cn, https://www.dropbox.com/s/f4tnuhipchpkgoj/book2012.pdf

  200. Fang W, Pang L, Yi W (2020) Survey on the application of deep reinforcement learning in image processing. J Artif Intell 2(1):39–58. https://doi.org/10.32604/jai.2020.09789

    Article  Google Scholar 

  201. Caicedo JC, Lazebnik S (2015) “Active object localization with deep reinforcement learning.” Proc IEEE Int Conf Comput Vis Inter 2488–2496. https://doi.org/10.1109/ICCV.2015.286

  202. Abtahi F, Zhu Z, Burry AM (2015) “A deep reinforcement learning approach to character segmentation of license plate images.” Proc 14th IAPR Int Conf Mach Vis Appl MVA 539–542. https://doi.org/10.1109/MVA.2015.7153249

  203. Zhou J et al (2020) “Graph neural networks: a review of methods and applications.” AI Open 1:57–81. https://doi.org/10.1016/j.aiopen.2021.01.001

  204. Marino K, Salakhutdinov R, Gupta A (2017) “The more you know: using knowledge graphs for image classification.” Proc - 30th IEEE Conf Comput Vis Pattern Recognition CVPR 20–28. https://doi.org/10.1109/CVPR.2017.10

  205. Lee CW, Fang W, Yeh CK, Wang YCF (2018) “Multi-label zero-shot learning with structured knowledge graphs,” Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 1576–1585. https://doi.org/10.1109/CVPR.2018.00170

  206. Hu H, Gu J, Zhang Z, Dai J, Wei Y (2018) “Relation networks for object detection,” Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 3588–3597. https://doi.org/10.1109/CVPR.2018.00378

  207. Chen X, Li LJ, Fei-Fei L, Gupta A (2018) “Iterative visual reasoning beyond convolutions,” Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 7239–7248. https://doi.org/10.1109/CVPR.2018.00756

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptual idea of the manuscript. The first draft of the manuscript was written by Mr. Tiyamike Banda, and all authors commented on the previous versions. Dr. Ali Akhavan Farid and Dr. Chin Seong Lim worked on supervising, reviewing, and editing the manuscript. Prof. Chuan Li and Dr. Veronica Lestari Jauw worked on co-supervision and editing of the manuscript. All authors read and finally approved the final version of the manuscript.

Corresponding author

Correspondence to Ali Akhavan Farid.

Ethics declarations

Ethics approval

Not applicable because this article does not contain any studies with human or animal subjects.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banda, T., Farid, A.A., Li, C. et al. Application of machine vision for tool condition monitoring and tool performance optimization–a review. Int J Adv Manuf Technol 121, 7057–7086 (2022). https://doi.org/10.1007/s00170-022-09696-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09696-x

Keywords

Navigation