Skip to main content
Log in

Hybrid big data analytics and Industry 4.0 approach to projecting cycle time ranges

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study proposes a hybrid big data analytics and Industry 4.0 (BD-I4) approach to enhancing the effectiveness of cycle time range projections for factory jobs. As a joint application of big data analytics and Industry 4.0, the BD-I4 approach is distinct from existing methods in this field. In this approach, each expert first constructs a fuzzy deep neural network to project the cycle time range of a job, an application of big data analytics (i.e., deep learning). Subsequently, the fuzzy weighted intersection operator is applied to aggregate the projected cycle times such that unequal authority levels can be considered, an application of Industry 4.0 (i.e., artificial intelligence). Applying the BD-I4 approach to a real case that the proposed methodology improved the projection precision by up to 72%, suggesting that instead of relying on a single expert, collaboration among multiple experts may be more effective and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

There is no original data associated with this paper.

Abbreviations

(−):

Fuzzy subtraction

(×):

Fuzzy multiplication

\(\tilde{\theta }_{l}^{h(1)} (m)\) :

Threshold on the lth node of the first hidden layer in the FDNN of the mth expert

\(\tilde{\theta }_{q}^{h(2)} (m)\) :

Threshold on the qth node of the second hidden layer in the FDNN of the mth expert

\(\tilde{\theta }^{o} (m)\) :

Threshold on the output node in the FDNN of the mth expert

AR(m):

Average range of fuzzy cycle time forecasts generated by the FDNN of the mth expert

\(\tilde{h}_{jl}^{(1)} (m)\) :

Output of job j from the lth node of the first hidden layer in the FDNN of the mth expert

\(\tilde{h}_{jq}^{(2)} (m)\) :

Output of job j from the qth node of the second hidden layer in the FDNN of the mth expert

\(\tilde{I}_{jl}^{h(1)} {(}m)\) :

Input of job j to the lth node of the first hidden layer in the FDNN of the mth expert

\(\tilde{I}_{jq}^{h(2)} (m)\) :

Input of job j to the qth node of the second hidden layer in the FDNN of the mth expert

\(\tilde{I}_{j}^{o} (m)\) :

Input of job j to the output node in the FDNN of the mth expert

\(\tilde{n}_{jl}^{h(1)} (m)\) :

Result of comparing the input of job j to the lth node of the first hidden layer with the threshold on the node in the FDNN of the mth expert

\(\tilde{n}_{jq}^{h(2)} (m)\) :

Result of comparing the input of job j to the qth node of the second hidden layer with the threshold on the node in the FDNN of the mth expert

\(\tilde{n}_{j}^{o} (m)\) :

Result of comparing the input of job j to the output node with the threshold on the node in the FDNN of the mth expert

\(\tilde{o}_{j} (m)\) :

Output of job j from the FDNN of the mth expert

\(\tilde{w}_{pl}^{h(1)} (m)\) :

Connection weight between the pth input node and the lth node of the first hidden layer in the FDNN of the mth expert

\(\tilde{w}_{lq}^{h(2)} (m)\) :

Connection weight between the lth node of the first hidden layer and the qth node of the second layer in the FDNN of the mth expert

\(\tilde{w}_{q}^{o} (m)\) :

Connection weight between the qth node of the second hidden layer and the output node in the FDNN of the mth expert

References

  1. Dauendorffer A, Shiozawa T, Yoshida K, Nagamine N, Kamei Y, Kawakami S, Shimura S, Nafus K, Sonoda A, Foubert P (2020) Clean track solutions for defectivity and CD control towards 5 nm and smaller nodes. Extreme Ultraviolet (EUV) Lithography XI 11323:113232A

  2. Chen T, Wang YC, Tsai HR (2009) Lot cycle time prediction in a ramping-up semiconductor manufacturing factory with a SOM–FBPN-ensemble approach with multiple buckets and partial normalization. Int J Adv Manuf Technol 42(11):1206–1216

    Article  Google Scholar 

  3. Baykasoğlu A, Göçken M, Unutmaz ZD (2008) New approaches to due date assignment in job shops. Eur J Oper Res 187(1):31–45

    Article  Google Scholar 

  4. Shabtay D (2010) Scheduling and due date assignment to minimize earliness, tardiness, holding, due date assignment and batch delivery costs. Int J Prod Econ 123(1):235–242

    Article  Google Scholar 

  5. Yin Y, Cheng TCE, Xu D, Wu CC (2012) Common due date assignment and scheduling with a rate-modifying activity to minimize the due date, earliness, tardiness, holding, and batch delivery cost. Comput Ind Eng 63(1):223–234

    Article  Google Scholar 

  6. Azadeh A, Ziaeifar A, Pichka K, Asadzadeh SM (2013) An intelligent algorithm for optimum forecasting of manufacturing lead times in fuzzy and crisp environments. Int J Logist Manag 16(2):186–210

    Google Scholar 

  7. Chiu C, Chang PC, Chiu NH (2003) A case-based expert support system for due-date assignment in a wafer fabrication factory. J Intell Manuf 14(3):287–296

    Article  Google Scholar 

  8. Öztürk A, Kayalıgil S, Özdemirel NE (2006) Manufacturing lead time estimation using data mining. Eur J Oper Res 173(2):683–700

    Article  MathSciNet  Google Scholar 

  9. Wang J, Zhang J (2016) Big data analytics for forecasting cycle time in semiconductor wafer fabrication system. Int J Prod Res 54(23):7231–7244

    Article  Google Scholar 

  10. Tan X, Xing L, Cai Z, Wang G (2020) Analysis of production cycle-time distribution with a big-data approach. J Intell Manuf 31:1889–1897

    Article  Google Scholar 

  11. Vinod V, Sridharan R (2011) Simulation modeling and analysis of due-date assignment methods and scheduling decision rules in a dynamic job shop production system. Int J Prod Econ 129(1):127–146

    Article  Google Scholar 

  12. Chang PC, Liao TW (2006) Combining SOM and fuzzy rule base for flow time prediction in semiconductor manufacturing factory. Appl Soft Comput 6(2):198–206

    Article  Google Scholar 

  13. Chen T (2012) An efficient and effective fuzzy collaborative intelligence approach for cycle time estimation in wafer fabrication. Int J Intell Syst 30(6):620–650

    Article  Google Scholar 

  14. Asadzadeh SM, Azadeh A, Ziaeifar A (2011) A neuro-fuzzy-regression algorithm for improved prediction of manufacturing lead time with machine breakdowns. Concurr Eng 19(4):269–281

    Article  Google Scholar 

  15. Tirkel I (2013) The effectiveness of variability reduction in decreasing wafer fabrication cycle time. Winter Simul Conf 3796–3805

  16. Wang J, Zhang J, Wang X (2017) Bilateral LSTM: a two-dimensional long short-term memory model with multiply memory units for short-term cycle time forecasting in re-entrant manufacturing systems. IEEE Trans Industr Inf 14(2):748–758

    Article  Google Scholar 

  17. Chien CF, Hsiao CW, Meng C, Hong KT, Wang ST (2005) Cycle time prediction and control based on production line status and manufacturing data mining. IEEE Int Symp Semicon Manu 2005:327–330

    Google Scholar 

  18. Chen T, Wu HC (2017) A new cloud computing method for establishing asymmetric cycle time intervals in a wafer fabrication factory. J Intell Manuf 28(5):1095–1107

    Article  Google Scholar 

  19. Pedrycz W (2008) Collaborative architectures of fuzzy modeling. IEEE World Cong Comput Intell 117–139

  20. Chen TCT, Honda K (2020) Fuzzy collaborative forecasting and clustering: methodology, system architecture, and applications. Springer Int Publ

  21. Chen T, Liao TW, Yu F (2015) Fuzzy collaborative intelligence and systems. Int J Intell Syst 30:617–619

    Article  Google Scholar 

  22. Zapata J, Vilar R, Ruiz R (2010) An adaptive-network-based fuzzy inference system for classification of welding defects. NDT and E Int 43(3):191–199

    Article  Google Scholar 

  23. Chen T, Lin YC (2008) A fuzzy-neural system incorporating unequally important expert opinions for semiconductor yield forecasting. Int J Uncertain Fuzz Knowl Based Syst 16(01):35–58

    Article  MathSciNet  Google Scholar 

  24. Chen TCT, Wang YC, Lin CW (2020) A fuzzy collaborative forecasting approach considering experts’ unequal levels of authority. Appl Soft Comput 94:106455

  25. Chen T, Wang YC, Wu HC (2021) Analyzing the impact of vaccine availability on alternative supplier selection amid the COVID-19 pandemic: a cFGM-FTOPSIS-FWI approach. Healthcare 9(1):71

    Article  Google Scholar 

  26. Russom P (2011) Big data analytics. TDWI Best Pract Rep 19(4):1–34

    Google Scholar 

  27. Tsai CW, Lai CF, Chao HC, Vasilakos AV (2015) Big data analytics: a survey. J Big data 2(1):1–32

    Article  Google Scholar 

  28. Kambatla K, Kollias G, Kumar V, Grama A (2014) Trends in big data analytics. J Parallel Distrib Comput 74(7):2561–2573

    Article  Google Scholar 

  29. Zappone A, Di Renzo M, Debbah M, Lam TT, Qian X (2019) Model-aided wireless artificial intelligence: embedding expert knowledge in deep neural networks for wireless system optimization. IEEE Veh Technol Mag 14(3):60–69

    Article  Google Scholar 

  30. Lasi H, Fettke P, Kemper HG, Feld T, Hoffmann M (2014) Industry 4.0. Bus Inf Syst Eng 6(4):239–242

  31. Dalenogare LS, Benitez GB, Ayala NF, Frank AG (2018) The expected contribution of Industry 4.0 technologies for industrial performance. Int J Prod Econ 204:383–394

    Article  Google Scholar 

  32. Chen T, Jeang A, Wang YC (2008) A hybrid neural network and selective allowance approach for internal due date assignment in a wafer fabrication plant. Int J Adv Manuf Technol 36(5–6):570–581

    Article  Google Scholar 

  33. Tüysüz F, Kahraman C (2010) Modeling a flexible manufacturing cell using stochastic Petri nets with fuzzy parameters. Expert Syst Appl 37(5):3910–3920

    Article  Google Scholar 

  34. Deng Y, Ren Z, Kong Y, Bao F, Dai Q (2016) A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans Fuzzy Syst 25(4):1006–1012

    Article  Google Scholar 

  35. Rajurkar S, Verma NK (2017) Developing deep fuzzy network with Takagi Sugeno fuzzy inference system. 2017 IEEE Int Conf Fuzzy Syst 1–6

  36. Mudiyanselage TKB, Xiao X, Zhang Y, Pan Y (2019) Deep fuzzy neural networks for biomarker selection for accurate cancer detection. IEEE Trans Fuzzy Syst 28(12):3219–3228

    Article  Google Scholar 

  37. Liang X, Wang G, Min MR, Qi Y, Han Z (2019) A deep spatio-temporal fuzzy neural network for passenger demand prediction. Proc 2019 SIAM Int Conf Data Min 100–108

  38. Qasem SN, Mohammadzadeh A (2021) A deep learned type-2 fuzzy neural network: singular value decomposition approach. Appl Soft Comput 105:107244

  39. Nocedal J, Wright S (2006) Numerical optimization. Springer Sci Bus Med

  40. Kriett PO, Eirich S, Grunow M (2017) Cycle time-oriented mid-term production planning for semiconductor wafer fabrication. Int J Prod Res 55(16):4662–4679

    Article  Google Scholar 

  41. Valles A, Sanchez J, Noriega S, Nuñez BG (2009) Implementation of Six Sigma in a manufacturing process: a case study. Int J Ind Eng 16(3):171–181

    Google Scholar 

  42. Wang YC, Tsai HR, Chen T (2021) A selectively fuzzified back propagation network approach for precisely estimating the cycle time range in wafer fabrication. Mathematics 9(12):1430

    Article  Google Scholar 

  43. Lin YC, Chen T (2020) A multibelief analytic hierarchy process and nonlinear programming approach for diversifying product designs: smart backpack design as an example. Proc Inst Mech Eng Part B J Eng Manuf 234(6–7):1044–1056

    Article  Google Scholar 

  44. Chen T (2017) New fuzzy method for improving the precision of productivity predictions for a factory. Neural Comput Appl 28(11):3507–3520

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science of Technology of Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the writing of this paper. Both authors read and approved the final manuscript. Data curation, methodology, and writing original draft: Toly Chen and Yu-Cheng Wang. Writing—review and editing: Toly Chen and Yu-Cheng Wang.

Corresponding author

Correspondence to Yu-Cheng Wang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof theorem 1

Substituting Eq. (9) into Eq. (8) gives.

$$\tilde{o}_{j} (m) = \frac{1}{{1 + e^{{(\tilde{\theta }^{o} (m)( - )\tilde{I}_{j}^{o} (m))}} }}$$
(23)

Therefore,

$$o_{j3} (m) = \frac{1}{{1 + e^{{(\theta_{1}^{o} (m) - I_{j3}^{o} (m))}} }}$$
(24)

The other parameters are not fuzzified, so \(I_{j3}^{o} (m)\) is equal to \(I_{j2}^{o*} (m)\), which has a fixed value:

$$o_{j3} (m) = \frac{1}{{1 + e^{{(\theta_{1}^{o} (m) - I_{j2}^{o*} (m))}} }}$$
(25)

To minimize AR(m), \(o_{j3} (m)\) should be as low as possible, which corresponds to maximization of \(\theta_{1}^{o} (m)\). However, \(\tilde{o}_{j} (m)\) should include \(a_{j}\):

$$o_{j3} (m) \ge a_{j};\,j = {1} \sim n$$
(26)

In addition,

$$o_{j3} (m) \ge o_{j2}^{*} (m);j = {1} \sim n$$
(27)

Therefore,

$$o_{j3} (m) \ge \max (o_{j2}^{*} (m),\;a_{j} );\,j = {1} \sim n$$
(28)

Substituting Eq. (24) into Constraint (28) gives

$$\theta_{1}^{o} (m) \le I_{j2}^{o*} (m) + \ln (\frac{1}{{\max (o_{j2}^{*} (m),\;a_{j} )}} - 1);j = {1} \sim n$$
(29)

To maximize \(\theta_{1}^{o} (m)\),

$$\theta_{1}^{o*} (m) = \mathop {\min }\limits_{j} \left( {I_{j2}^{o*} (m) + \ln (\frac{1}{{\max (o_{j2}^{*} (m),\;a_{j} )}} - 1)} \right);\,j = {1} \sim n$$
(30)

Theorem 1 is proved.

Proof theorem 2

The required proof is similar to that of Theorem 1.

Proof theorem 3

According to Eq. (7),

$$I_{j3}^{o} (m) = \max \left( {\sum\limits_{q = 1}^{{Q_{m} }} {(w_{q3}^{o} (m)h_{jq1}^{(2)} (m))} ,\;\sum\limits_{q = 1}^{{Q_{m} }} {(w_{q3}^{o} (m)h_{jq3}^{(2)} (m))} } \right)$$
(31)

because \(\tilde{h}_{jq}^{(2)} (m)\) is positive, whereas \(\tilde{w}_{q}^{o} (m)\) may be negative. Substituting Eq. (31) into Eq. (24) gives

$$o_{j3} (m) = \frac{1}{{1 + e^{{\left( {\theta_{1}^{o} (m) - \max (\sum\limits_{q = 1}^{{Q_{m} }} {(w_{q3}^{o} (m)h_{jq1}^{(2)} (m)} ),\;\sum\limits_{q = 1}^{{Q_{m} }} {(w_{q3}^{o} (m)h_{jq3}^{(2)} (m))} )} \right)}} }}$$
(32)

Only \(w_{{l_{f} }}^{o}\) is fuzzified; the other parameters are set to their optimized cores:

$$\begin{aligned} o_{j3} (m) & = \frac{1}{{1 + e^{{\left( {\theta_{2}^{o*} (m) - \max (w_{{q_{f} 3}}^{o} (m)h_{{jq_{f} 2}}^{(2)*} (m) + \sum\limits_{{q \ne q_{f} }} {(w_{q2}^{o*} (m)h_{jq2}^{(2)*} (m} )),\;w_{{q_{f} 3}}^{o} (m)h_{{jq_{f} 2}}^{(2)*} (m) + \sum\limits_{{q \ne q_{f} }} {(w_{q2}^{o*} (m)h_{jq2}^{(2)*} (m)} ))} \right)}} }} \\ & = \frac{1}{{1 + e^{{\left( {\theta_{2}^{o*} (m) - w_{{q_{f} 3}}^{o} (m)h_{{jq_{f} 2}}^{(2)*} (m) - \sum\limits_{{q \ne q_{f} }} {(w_{q2}^{o*} (m)h_{jq2}^{(2)*} (m} ))} \right)}} }} \\ \end{aligned}$$
(33)

Substituting Eq. (33) into Constraint (28) gives

$$\frac{1}{{1 + e^{{\left( {\theta_{2}^{o*} (m) - w_{{q_{f} 3}}^{o} (m)h_{{jq_{f} 2}}^{(2)*} (m) - \sum\limits_{{q \ne q_{f} }} {(w_{q2}^{o*} (m)h_{jq2}^{(2)*} (m} ))} \right)}} }} \ge \max (o_{j2}^{*} (m),\;a_{j} );\,j = {1} \sim n$$
(34)

Consequently,

$$w_{{q_{f} 3}}^{o} (m) \ge \frac{{\theta_{2}^{o*} (m) - \ln (\frac{1}{{\max (o_{j2}^{*} (m),\;a_{j} )}} - 1) - \sum\limits_{{q \ne q_{f} }} {(w_{q2}^{o*} (m)h_{jq2}^{(2)*} (m))} }}{{h_{{jq_{f} 2}}^{(2)*} (m)}};\,j = {1} \sim n$$
(35)

Therefore,

$$w_{{q_{f} 3}}^{o} (m) \ge \mathop {\max }\limits_{j} \left( {\frac{{\theta_{2}^{o*} (m) - \ln (\frac{1}{{\max (o_{j2}^{*} (m),\;a_{j} )}} - 1) - \sum\limits_{{q \ne q_{f} }} {(w_{q2}^{o*} (m)h_{jq2}^{(2)*} (m))} }}{{h_{{jq_{f} 2}}^{(2)*} (m)}}} \right)$$
(36)

Widening \(\tilde{w}_{{q_{f} }}^{o} (m)\) increases the fuzziness of \(\tilde{o}_{j} (m)\). Therefore, the following is reasonable:

$$w_{{q_{f} 3}}^{o*} (m) = \mathop {\max }\limits_{j} \left( {\frac{{\theta_{2}^{o*} (m) - \ln (\frac{1}{{\max (o_{j2}^{*} (m),\;a_{j} )}} - 1) - \sum\limits_{{q \ne q_{f} }} {(w_{q2}^{o*} (m)h_{jq2}^{(2)*} (m))} }}{{h_{{jq_{f} 2}}^{(2)*} (m)}}} \right)$$
(37)

Theorem 3 is proved.

Proof theorem 4

The required proof is similar to that of Theorem 3.

Proof theorem 5

The required proof is straightforward because the other variables in Eqs. (13) and (14) are not affected by the fuzzification of \(\theta^{o} (m)\).

Proof theorem 6

Substituting Eq. (5) into Eq. (6) gives.

$$\tilde{h}_{jq}^{(2)} (m) = \frac{1}{{1 + e^{{{(}\tilde{\theta }_{q}^{h(2)} (m)( - )\tilde{I}_{jq}^{h(2)} {\text{(m))}}}} }}$$
(38)

which is decomposed into

$$h_{jq1}^{(2)} (m) = \frac{1}{{1 + e^{{(\theta_{q3}^{h(2)} (m) - I_{jq1}^{h(2)} (m))}} }}$$
(39)
$$h_{jq3}^{(2)} (m) = \frac{1}{{1 + e^{{(\theta_{q1}^{h(2)} (m) - I_{jq3}^{h(2)} (m))}} }}$$
(40)

Substituting Eqs. (39) and (40) into Eq. (31) leads to

$$I_{j3}^{o} (m) = \max \left( {\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q3}^{o} (m)}}{{1 + e^{{{(}\theta_{q3}^{h(2)} (m) - I_{jq1}^{h(2)} (m){)}}} }}} ,\;\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q3}^{o} (m)}}{{1 + e^{{{(}\theta_{q1}^{h(2)} (m) - I_{jq3}^{h(2)} (m){)}}} }}} } \right)$$
(41)

Similarly, we can derive

$$I_{j1}^{o} (m) = \min \left( {\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q1}^{o} (m)}}{{1 + e^{{{(}\theta_{q3}^{h(2)} (m) - I_{jq1}^{h(2)} (m){)}}} }}} ,\;\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q1}^{o} (m)}}{{1 + e^{{{(}\theta_{q1}^{h(2)} (m) - I_{jq3}^{h(2)} (m){)}}} }}} } \right)$$
(42)

Substituting Eq. (41) into Eq. (25) gives

$$o_{j3} (m) = \frac{1}{{1 + e^{{\left( {\theta_{1}^{o} (m) - \max (\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q3}^{o} (m)}}{{1 + e^{{{(}\theta_{q3}^{h(2)} (m) - I_{jq1}^{h(2)} (m){)}}} }}} ,\;\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q3}^{o} (m)}}{{1 + e^{{{(}\theta_{q1}^{h(2)} (m) - I_{jq3}^{h(2)} (m){)}}} }}} )} \right)}} }}$$
(43)

Similarly, we also have

$$o_{j1} (m) = \frac{1}{{1 + e^{{\left( {\theta_{3}^{o} (m) - \min (\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q1}^{o} (m)}}{{1 + e^{{{(}\theta_{q3}^{h(2)} (m) - I_{jq1}^{h(2)} (m){)}}} }}} ,\;\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q1}^{o} (m)}}{{1 + e^{{{(}\theta_{q1}^{h(2)} (m) - I_{jq3}^{h(2)} (m){)}}} }}} )} \right)}} }}$$
(44)

The following requirements should be met:

$$\frac{1}{{1 + e^{{\left( {\theta_{1}^{o} (m) - \max (\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q3}^{o} (m)}}{{1 + e^{{{(}\theta_{q3}^{h(2)} (m) - I_{jq1}^{h(2)} (m){)}}} }}} ,\;\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q3}^{o} (m)}}{{1 + e^{{{(}\theta_{q1}^{h(2)} (m) - I_{jq3}^{h(2)} (m){)}}} }}} )} \right)}} }} \ge \max (o_{j2}^{*} (m),\;a_{j} );\,j = {1} \sim n$$
(45)
$$\frac{1}{{1 + e^{{\left( {\theta_{3}^{o} (m) - \min (\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q1}^{o} (m)}}{{1 + e^{{{(}\theta_{q3}^{h(2)} (m) - I_{jq1}^{h(2)} (m){)}}} }}} ,\;\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q1}^{o} (m)}}{{1 + e^{{{(}\theta_{q1}^{h(2)} (m) - I_{jq3}^{h(2)} (m){)}}} }}} )} \right)}} }} \le \min (o_{j2}^{*} (m),\;a_{j} );\,j = {1} \sim n$$
(46)

Equivalently,

$$\begin{aligned}\max \left( {\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q3}^{o} (m)}}{{1 + e^{{{(}\theta_{q3}^{h(2)} (m) - I_{jq1}^{h(2)} (m){)}}} }}} ,\;\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q3}^{o} (m)}}{{1 + e^{{{(}\theta_{q1}^{h(2)} (m) - I_{jq3}^{h(2)} (m){)}}} }}} } \right) \\\ge \theta_{1}^{o} (m) - \ln (\frac{1}{{\max (o_{j2}^{*} (m),\;a_{j} )}} - 1);\,j = {1} \sim n\end{aligned}$$
(47)
$$\begin{aligned}\min \left( {\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q1}^{o} (m)}}{{1 + e^{{{(}\theta_{q3}^{h(2)} (m) - I_{jq1}^{h(2)} (m){)}}} }}} ,\;\sum\limits_{q = 1}^{{Q_{m} }} {\frac{{w_{q1}^{o} (m)}}{{1 + e^{{{(}\theta_{q1}^{h(2)} (m) - I_{jq3}^{h(2)} (m){)}}} }}} } \right) \\\le \theta_{3}^{o} (m) - \ln (\frac{1}{{\min (o_{j2}^{*} (m),\;a_{j} )}} - 1);\,j = {1} \sim n\end{aligned}$$
(48)

Only \(\theta_{{q_{f} }}^{h(2)}\) is fuzzified; the other fuzzy parameters are set to their optimized cores:

$$\begin{aligned}\max \left( \begin{gathered} \frac{{w_{{q_{f} 2}}^{o*} (m)}}{{1 + e^{{{(}\theta_{{q_{f} 3}}^{h(2)} (m) - I_{{jq_{f} 2}}^{h(2)*} (m){)}}} }} + \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} , \hfill \\ \;\frac{{w_{{q_{f} 2}}^{o*} (m)}}{{1 + e^{{{(}\theta_{{q_{f} 1}}^{h(2)} (m) - I_{{jq_{f} 2}}^{h(2)*} (m){)}}} }} + \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} \hfill \\ \end{gathered} \right)\\ \ge \theta_{2}^{o*} (m) - \ln (\frac{1}{{\max (o_{j2}^{*} (m),\;a_{j} )}} - 1);\,j = {1} \sim n\end{aligned}$$
(49)
$$\begin{aligned}\min \left( \begin{gathered} \frac{{w_{{q_{f} 2}}^{o*} (m)}}{{1 + e^{{{(}\theta_{{q_{f} 3}}^{h(2)} (m) - I_{{jq_{f} 2}}^{h(2)*} (m){)}}} }} + \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} , \hfill \\ \;\frac{{w_{{q_{f} 2}}^{o*} (m)}}{{1 + e^{{{(}\theta_{{q_{f} 1}}^{h(2)} (m) - I_{{jq_{f} 2}}^{h(2)*} (m){)}}} }} + \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} \hfill \\ \end{gathered} \right)\\ \le \theta_{2}^{o*} (m) - \ln (\frac{1}{{\min (o_{j2}^{*} (m),\;a_{j} )}} - 1);j = {1} \sim n\end{aligned}$$
(50)

If \(w_{{q_{f} 2}}^{o*} (m) \ge 0\),

$$\begin{aligned}\frac{{w_{{q_{f} 2}}^{o*} (m)}}{{1 + e^{{{(}\theta_{{q_{f} 1}}^{h(2)} (m) - I_{{jq_{f} 2}}^{h(2)*} (m){)}}} }} + \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} \ge \theta_{2}^{o*} (m)\\ - \ln (\frac{1}{{\max (o_{j2}^{*} (m),\;a_{j} )}} - 1);\,j = {1} \sim n\end{aligned}$$
(51)
$$\begin{aligned}\frac{{w_{{q_{f} 2}}^{o*} (m)}}{{1 + e^{{{(}\theta_{{q_{f} 3}}^{h(2)} (m) - I_{{jq_{f} 2}}^{h(2)*} (m){)}}} }} + \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} \le \theta_{2}^{o*} (m)\\ - \ln (\frac{1}{{\min (o_{j2}^{*} (m),\;a_{j} )}} - 1);\,j = {1} \sim n\end{aligned}$$
(52)

Therefore,

$$\begin{aligned}\theta_{{q_{f} 1}}^{h(2)} (m) &\le \ln (\frac{{w_{{q_{f} 2}}^{o*} (m)}}{{\theta_{2}^{o*} (m) - \ln (\frac{1}{{\max (o_{j2}^{*} (m),\;a_{j} )}} - 1) - \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} }} - 1)\\ &+ I_{{jq_{f} 2}}^{h(2)*} (m);\,j = {1} \sim n\end{aligned}$$
(53)
$$\theta_{{q_{f} 3}}^{h(2)} (m) \ge \ln (\frac{{w_{{q_{f} 2}}^{o*} (m)}}{{\theta_{2}^{o*} (m) - \ln (\frac{1}{{\min (o_{j2}^{*} (m),\;a_{j} )}} - 1) - \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} }} - 1) + I_{{jq_{f} 2}}^{h(2)*} (m);\,j = {1} \sim n$$
(54)

Thus,

$$\theta_{{q_{f} 1}}^{h(2)} (m) \le \mathop {\min }\limits_{j} \left( {\ln (\frac{{w_{{q_{f} 2}}^{o*} (m)}}{{\theta_{2}^{o*} (m) - \ln (\frac{1}{{\max (o_{j2}^{*} (m),\;a_{j} )}} - 1) - \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} }} - 1) + I_{{jq_{f} 2}}^{h(2)*} (m)} \right)$$
(55)
$$\theta_{{q_{f} 3}}^{h(2)} (m) \ge \mathop {\max }\limits_{j} \left( {\ln (\frac{{w_{{q_{f} 2}}^{o*} (m)}}{{\theta_{2}^{o*} (m) - \ln (\frac{1}{{\min (o_{j2}^{*} (m),\;a_{j} )}} - 1) - \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} }} - 1) + I_{{jq_{f} 2}}^{h(2)*} (m)} \right)$$
(56)

To reduce the fuzziness of \(\tilde{\theta }_{{q_{f} }}^{h(2)} (m)\), the following is reasonable:

$$\theta_{{q_{f} 1}}^{h(2)*} (m) = \mathop {\min }\limits_{j} \left( {\ln (\frac{{w_{{q_{f} 2}}^{o*} (m)}}{{\theta_{2}^{o*} (m) - \ln (\frac{1}{{\max (o_{j2}^{*} (m),\;a_{j} )}} - 1) - \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} }} - 1) + I_{{jq_{f} 2}}^{h(2)*} (m)} \right)$$
(57)
$$\theta_{{q_{f} 3}}^{h(2)*} (m) = \mathop {\max }\limits_{j} \left( {\ln (\frac{{w_{{q_{f} 2}}^{o*} (m)}}{{\theta_{2}^{o*} (m) - \ln (\frac{1}{{\min (o_{j2}^{*} (m),\;a_{j} )}} - 1) - \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} }} - 1) + I_{{jq_{f} 2}}^{h(2)*} (m)} \right)$$
(58)

Otherwise (i.e., \(w_{{q_{f} 2}}^{o*} (m) < 0\)), Constraints (49) and (50) become

$$\begin{aligned}&\frac{w_{q_f2}^{o\ast}\left(m\right)}{1+e^{\left(\theta_{q_f3}^{h\left(2\right)}\left(m\right)-I_{jq_f2}^{h\left(2\right)\ast}\left(m\right)\right)}}+\sum_{q\neq q_f}\frac{w_{q_f2}^{o\ast}\left(m\right)}{1+e^{\left(\theta_{q_f3}^{h\left(2\right)}\left(m\right)-I_{jq_f2}^{h\left(2\right)\ast}\left(m\right)\right)}}\geq\theta_2^{o\ast}\left(m\right)\\&-\ln\left(\frac1{max\left(o_{i2}^\ast\left(m\right),\alpha_j\right)}-1\right);\;j=1\sim n\end{aligned}$$
(59)
$$\begin{aligned}\frac{{w_{{q_{f} 2}}^{o*} (m)}}{{1 + e^{{{(}\theta_{{q_{f} 1}}^{h(2)} (m) - I_{{jq_{f} 2}}^{h(2)*} (m){)}}} }} + \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} \le \theta_{2}^{o*} (m)\\ - \ln (\frac{1}{{\min (o_{j2}^{*} (m),\;a_{j} )}} - 1);\,j = {1} \sim n\end{aligned}$$
(60)

Therefore,

$$\begin{aligned}\theta_{{q_{f} 3}}^{h(2)} (m) &\ge \ln \left( {\frac{{w_{{q_{f} 2}}^{o*} (m)}}{{\theta_{2}^{o*} (m) - \ln (\frac{1}{{\max (o_{j2}^{*} (m),\;a_{j} )}} - 1) - \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} }} - 1} \right)\\& + I_{{jq_{f} 2}}^{h(2)*} (m);\,j = {1} \sim n\end{aligned}$$
(61)
$$\theta_{{q_{f} 1}}^{h(2)} (m) \le \ln (\frac{{w_{{q_{f} 2}}^{o*} (m)}}{{\theta_{2}^{o*} (m) - \ln (\frac{1}{{\min (o_{j2}^{*} (m),\;a_{j} )}} - 1) - \sum\limits_{{q \ne q_{f} }} {\frac{{w_{q2}^{o*} (m)}}{{1 + e^{{{(}\theta_{q2}^{h(2)*} (m) - I_{jq2}^{h(2)*} (m){)}}} }}} }} - 1) + I_{{jq_{f} 2}}^{h(2)*} (m);\,j = {1} \sim n$$
(62)

The same results are derived. Theorem 6 is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Wang, YC. Hybrid big data analytics and Industry 4.0 approach to projecting cycle time ranges. Int J Adv Manuf Technol 120, 279–295 (2022). https://doi.org/10.1007/s00170-022-08733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08733-z

Keywords

Navigation