Skip to main content
Log in

Study of the tool path generation method for an ultra-precision spherical complex surface based on a five-axis machine tool

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The improvement of ultra-precision machining technology has significantly boosted the demand for the surface quality and surface accuracy of the workpieces to be machined. However, the geometric shapes of workpiece surfaces cannot be adequately manufactured with simple plane, cylindrical, or spherical surfaces because of their different applications in various fields. In this research, a method was proposed to generate tool paths for the machining of complex spherical surfaces based on an ultra-precise five-axis turning and milling machine with a C-Y-Z-X-B structure. Through the proposed tool path generation method, ultra-precise complex spherical surface machining was achieved. First, the complex spherical surface model was modeled and calculated, and then it was combined with the designed model to generate the tool path. Then the tool paths were generated with a numerically controlled (NC) program. Based on an ultra-precision three-coordinate measuring instrument and a white light interferometer, the machining accuracy of a workpiece surface was characterized, and the effectiveness of the tool path generation method was verified. The surface roughness of the machined workpiece was less than 90 nm. Furthermore, the surface roughness within the spherical region appeared to be less than 30 nm. The presented tool path generation method in this research produced ultra-precision spherical complex surfaces. The method could be applied to complex spherical surfaces with other characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Yuan JL, Lyu BH, Hang W, Deng QF (2017) Review on the progress of ultra-precision machining technologies. Front Mech Eng 12(2):158–180. https://doi.org/10.1007/s11465-017-0455-9

    Article  Google Scholar 

  2. Kong LB, Cheung CF (2012) Prediction of surface generation in ultra-precision raster milling of optical freeform surfaces using an integrated kinematics error model. Adv Eng Softw 45(1):124–136. https://doi.org/10.1016/j.advengsoft.2011.09.011

    Article  Google Scholar 

  3. Cheung CF, Li HF, Lee WB, To S, Kong LB (2007) An integrated form characterization method for measuring ultra-precision freeform surfaces. Int J Mach Tools Manuf 47(1):81–91. https://doi.org/10.1016/j.ijmachtools.2006.02.013

    Article  Google Scholar 

  4. Takino H, Kawai T, Takeuchi Y (2007) 5-axis control ultra-precision machining of complex-shaped mirrors for extreme ultraviolet lithography system. CIRP Ann-Manuf Technol 56(1):123–126. https://doi.org/10.1016/j.cirp.2007.05.031

    Article  Google Scholar 

  5. Tauhiduzzaman M, Veldhuis SC (2014) Effect of material microstructure and tool geometry on surface generation in single point diamond turning. Precis Eng-J Int Soc Precis Eng Nanotechnol 38(3):481–491. https://doi.org/10.1016/j.precisioneng.2014.01.002

    Article  Google Scholar 

  6. Zhang SJ, Zhou YP, Zhang HJ, Xiong ZW, To S (2019) Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications. Int J Mach Tools Manuf 142:16–41. https://doi.org/10.1016/j.ijmachtools.2019.04.009

    Article  Google Scholar 

  7. Tie GP, Dai YF, Guan CL, Zhu DC, Song B (2013) Research on full-aperture ductile cutting of KDP crystals using spiral turning technique. J Mater Process Technol 213(12):2137–2144. https://doi.org/10.1016/j.jmatprotec.2013.06.006

    Article  Google Scholar 

  8. Li CJ, Li Y, Gao X, Duong CV (2015) Ultra-precision machining of Fresnel lens mould by single-point diamond turning based on axis B rotation. Int J Adv Manuf Technol 77(5-8):907–913. https://doi.org/10.1007/s00170-014-6522-z

    Article  Google Scholar 

  9. Sze-Wei G, Han-Seok L, Rahman M, Watt F (2007) A fine tool servo system for global position error compensation for a miniature ultra-precision lathe. Int J Mach Tools Manuf 47(7-8):1302–1310. https://doi.org/10.1016/j.ijmachtools.2006.08.023

    Article  Google Scholar 

  10. Yu DP, Gan SW, Wong YS, Hong GS, Rahman M, Yao J (2012) Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces. Int J Adv Manuf Technol 63(9-12):1137–1152. https://doi.org/10.1007/s00170-012-3964-z

    Article  Google Scholar 

  11. Yuan YJ, Zhang DW, Jing XB, Zhu HY, Zhou WL, Cao J, Ehmann KF (2019) Fabrication of hierarchical freeform surfaces by 2D compliant vibration-assisted cutting. Int J Mech Sci 152:454–464. https://doi.org/10.1016/j.ijmecsci.2018.12.051

    Article  Google Scholar 

  12. Mishra V, Burada DR, Pant KK, Karar V, Jha S, Khan GS (2019) Form error compensation in the slow tool servo machining of freeform optics. Int J Adv Manuf Technol 105(1-4):1623–1635. https://doi.org/10.1007/s00170-019-04359-w

    Article  Google Scholar 

  13. Kong LB, Cheung CF, Lee WB (2016) A theoretical and experimental investigation of orthogonal slow tool servo machining of wavy microstructured patterns on precision rollers. Precis Eng-J Int Soc Precis Eng Nanotechnol 43:315–327. https://doi.org/10.1016/j.precisioneng.2015.08.012

    Article  Google Scholar 

  14. Deng WJ, Yin XL, Tang W, Xue DL, Zhang XJ (2019) Research on ion beam figuring system with five-axis hybrid mechanism for complex optical surface. In: Li X, Plummer WT, Fan B, Pu M, Wan Y, Luo X (eds) 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, vol 10838. Proceedings of SPIE. Spie-Int Soc Optical Engineering, Bellingham. https://doi.org/10.1117/12.2504957

    Chapter  Google Scholar 

  15. Butt MA, Yang YQ, Pei XZ, Liu Q (2018) Five-axis milling vibration attenuation of freeform thin-walled part by eddy current damping. Precis Eng-J Int Soc Precis Eng Nanotechnol 51:682–690. https://doi.org/10.1016/j.precisioneng.2017.11.010

    Article  Google Scholar 

  16. Luo M, Luo H, Zhang DH, Tang K (2018) Improving tool life in multi-axis milling of Ni-based superalloy with ball-end cutter based on the active cutting edge shift strategy. J Mater Process Technol 252:105–115. https://doi.org/10.1016/j.jmatprotec.2017.09.010

    Article  Google Scholar 

  17. Xu JT, Zhang DY, Sun YW (2019) Kinematics performance oriented smoothing method to plan tool orientations for 5-axis ball-end CNC machining. Int J Mech Sci 157:293–303. https://doi.org/10.1016/j.ijmecsci.2019.04.038

    Article  Google Scholar 

  18. Cheng Q, Feng QA, Liu ZF, Gu PH, Cai LG (2015) Fluctuation prediction of machining accuracy for multi-axis machine tool based on stochastic process theory. Proc Inst Mech Eng Part C-J Eng Mech Eng Sci 229(14):2534–2550. https://doi.org/10.1177/0954406214562633

    Article  Google Scholar 

  19. Wang HW, Ran Y, Zhang SY, Li YL (2020) Coupling and decoupling measurement method of complete geometric errors for multi-axis machine tools. Appl Sci-Basel 10(6):19. https://doi.org/10.3390/app10062164

    Article  Google Scholar 

  20. McCall B, Tkaczyk TS (2013) Rapid fabrication of miniature lens arrays by four-axis single point diamond machining. Opt Express 21(3):3557–3572. https://doi.org/10.1364/oe.21.003557

    Article  Google Scholar 

  21. Dutterer BS, Lineberger JL, Smilie PJ, Hildebrand DS, Harriman TA, Davies MA, Suleski TJ, Lucca DA (2014) Diamond milling of an Alvarez lens in germanium. Precis Eng-J Int Soc Precis Eng Nanotechnol 38(2):398–408. https://doi.org/10.1016/j.precisioneng.2013.12.006

    Article  Google Scholar 

  22. Osan A, Banica M, Nasui V (2018) Processing of convex complex surfaces with toroidal milling versus ball nose end mill. In: Slatineanu L, Merticaru V, Mihalache AM et al (eds) 22nd International Conference on Innovative Manufacturing Engineering and Energy - Imane&E 2018, vol 178. MATEC Web of Conferences. https://doi.org/10.1051/matecconf/201817801003

    Chapter  Google Scholar 

  23. Fan HZ, Xi G, Wang W, Cao YL (2016) An efficient five-axis machining method of centrifugal impeller based on regional milling. Int J Adv Manuf Technol 87(1-4):789–799. https://doi.org/10.1007/s00170-016-8467-x

    Article  Google Scholar 

  24. Chen C-S, Huang C-H (2008) Experimental Study on Five-Axis Machining Parameter for NAK80 die steel. In: Hwang SJ, Lee SY (eds) Advanced Manufacture: Focusing on New and Emerging Technologies, vol 594. Materials Science Forum. pp 226-234. https://doi.org/10.4028/www.scientific.net/MSF.594.226

  25. Xiao Y, Chen M, Chu X, Tian W (2013) Research on accuracy analysis and performance verification test of micro-precise five-axis machine tool. Int J Adv Manuf Technol 67(1-4):387–395. https://doi.org/10.1007/s00170-012-4492-6

    Article  Google Scholar 

  26. Yuan YJ, Zhang DW, Jing XB, Ehmann KF (2020) Freeform surface fabrication on hardened steel by double frequency vibration cutting. J Mater Process Technol 275:9. https://doi.org/10.1016/j.jmatprotec.2019.116369

    Article  Google Scholar 

  27. Kong LB, Ma YG, Ren MJ, Xu M, Cheung CA (2020) Generation and characterization of ultra-precision compound freeform surfaces. Sci Prog 103(1):21. https://doi.org/10.1177/0036850419880112

    Article  Google Scholar 

  28. Koyama Y, Nakamoto K, Takeuchi Y (2012) Development of CAPP/CAM system for ultraprecision micromachining-process planning considering setting error. In: Lee WB, Cheung CF, To S (eds) Proceedings of Precision Engineering and Nanotechnology, Key Engineering Materials, vol 516. Trans Tech Publications Ltd, Stafa-Zurich, pp 66–72. https://doi.org/10.4028/www.scientific.net/KEM.516.66

    Chapter  Google Scholar 

  29. Chen MJ, Guo WX, Li D (2004) Research of the complex surface algorithm based on recursive subdivision numeric control interpolation. In: Ai X, Li J, Huang C (eds) Advances in Materials Manufacturing Science and Technology, vol 471-472. Materials Science Forum. Trans Tech Publications Ltd, Durnten-Zurich, pp 155–161. https://doi.org/10.4028/www.scientific.net/MSF.471-472.155

    Chapter  Google Scholar 

  30. Chen MJ, Xiao Y, Tian WL, Wu CY, Chu X (2014) Theoretical and experimental research on error analysis and optimization of tool path in fabricating aspheric compound eyes by precision micro milling. Chin J Mech Eng 27(3):558–566. https://doi.org/10.3901/cjme.2014.03.558

    Article  Google Scholar 

  31. Huang R, Zhang XQ, Rahman M, Kumar AS, Liu K (2015) Ultra-precision machining of radial Fresnel lens on roller moulds. CIRP Ann-Manuf Technol 64(1):121–124. https://doi.org/10.1016/j.cirp.2015.04.062

    Article  Google Scholar 

  32. Chen CCA, Chen CM, Chen JR (2007) Toolpath generation for diamond shaping of aspheric lens array. J Mater Process Technol 192:194–199. https://doi.org/10.1016/j.jmatprotec.2007.04.024

    Article  Google Scholar 

  33. Gao D, To S, Lee WB (2006) Tool path generation for machining of optical freeform surfaces by an ultra-precision multiaxis machine tool. Proc Inst Mech Eng Part B-J Eng Manuf 220(12):2021–2026. https://doi.org/10.1243/09544054jem614

    Article  Google Scholar 

  34. Brecher C, Lange S, Merz M, Niehaus F, Wenzel C, Winterschladen M (2006) NURBS based ultra-precision free-form machining. CIRP Ann-Manuf Technol 55(1):547–550. https://doi.org/10.1016/s0007-8506(07)60479-x

    Article  Google Scholar 

  35. Arivazhagan A (2020) Toolpath algorithm for free form irregular contoured walls/surfaces with internal deflecting connections. Mater Today-Proc 22:3037–3047

    Article  Google Scholar 

  36. Wu BH, Liang MC, Zhang Y, Luo M, Tang K (2018) Optimization of machining strip width using effective cutting shape of flat-end cutter for five-axis free-form surface machining. Int J Adv Manuf Technol 94(5-8):2623–2633. https://doi.org/10.1007/s00170-017-0953-2

    Article  Google Scholar 

  37. Moodleah S, Bohez EJ, Makhanov SS (2016) Five-axis machining of STL surfaces by adaptive curvilinear toolpaths. Int J Prod Res 54(24):7296–7329. https://doi.org/10.1080/00207543.2016.1176265

    Article  Google Scholar 

  38. Ding S, Mannan MA, Poo AN, Yang DCH, Han Z (2005) The implementation of adaptive isoplanar tool path generation for the machining of free-form surfaces. Int J Adv Manuf Technol 26(7-8):852–860. https://doi.org/10.1007/s00170-004-2058-y

    Article  Google Scholar 

  39. Lin ZW, Fu JZ, Shen HY, Gan WF (2014) An accurate surface error optimization for five-axis machining of freeform surfaces. Int J Adv Manuf Technol 71(5-8):1175–1185. https://doi.org/10.1007/s00170-013-5549-x

    Article  Google Scholar 

  40. Wan M, Liu Y, Xing WJ, Zhang WH (2018) Singularity avoidance for five-axis machine tools through introducing geometrical constraints. Int J Mach Tools Manuf 127:1–13. https://doi.org/10.1016/j.ijmachtools.2017.12.006

    Article  Google Scholar 

  41. Lock GD, Edwards S, Almond DP (2010) Flow visualization experiments demonstrating the reverse swing of a cricket ball. Proc Inst Mech Eng Part P-J Sport Eng Technol 224(P3):191–199. https://doi.org/10.1243/17543371jset73

    Article  Google Scholar 

  42. Scobie JA, Sangan CM, Lock GD (2014) Flow visualisation experiments on sports balls. In: James D, Choppin S, Allen T, Wheat J, Fleming P (eds) Engineering of Sport 10, Procedia Engineering, vol 72. Elsevier Science Bv, Amsterdam, pp 738–743. https://doi.org/10.1016/j.proeng.2014.06.125

    Chapter  Google Scholar 

  43. Cripps RJ, Cross B, Hunt M, Mullineux G (2017) Singularities in five-axis machining: cause, effect and avoidance. Int J Mach Tools Manuf 116:40–51. https://doi.org/10.1016/j.ijmachtools.2016.12.002

    Article  Google Scholar 

  44. Jiang Z, Ding JX, Zhang J, Ding QC, Li QZ, Du L, Wang W (2019) Research on detection of the linkage performance for five-axis CNC machine tools based on RTCP trajectories combination. Int J Adv Manuf Technol 100(1-4):941–962. https://doi.org/10.1007/s00170-018-2715-1

    Article  Google Scholar 

Download references

Availability of data and material

Not applicable.

Code availability

Not applicable.

Funding

This work was supported by the Science Challenge Project of China (Grant No. TZ2018006-0202-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuesen Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, T., Zhao, X., Cui, Z. et al. Study of the tool path generation method for an ultra-precision spherical complex surface based on a five-axis machine tool. Int J Adv Manuf Technol 115, 3251–3267 (2021). https://doi.org/10.1007/s00170-021-07403-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07403-w

Keywords

Navigation