Skip to main content
Log in

Thermal modeling and experimental investigation on the influences of the process parameters on warm incremental sheet metal forming of titanium grade 2 using electric heating technique

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Incremental sheet metal forming (ISMF) is one of the most innovative flexible processes for small volume production of complex sheet metal components. Formability of titanium grade 2 sheets is limited at room temperature and can be improved by forming at elevated temperature. Therefore, warm ISMF process has been explored to enhance the material formability. In this paper, thermal model has been proposed to predict the effect of temperature on the formability of sheet metal in warm ISMF process. Sine law has been used to determine the final thickness of the formed sheets. Experimental investigations on titanium grade 2 sheet at warm temperature has been carried out to study the effects of incremental depth, wall angle, and temperature on formability, geometrical accuracy, and thickness reduction during warm ISMF process using Taguchi L9 orthogonal array. Based on the experimental results, it was found that titanium grade 2 sheets formed with incremental depth of 0.1 mm and temperature of 300 °C showed higher formability with geometrical deviation of 1.52% and thickness reduction of 37.90%. Predictions of thermal model are validated by experimental work, and it has been found that experimental results are in good agreement with the thermal model. Analysis of variance (ANOVA) was used to identify the percentage contribution of each process parameters. To analyze the fracture behavior of the formed component, fractography study has been carried out using scanning electron microscopy (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\( \dot{\mathrm{E}} \) in :

rate of heat energy flows into the system (W)

\( \dot{\mathrm{E}} \) out :

rate of heat energy flows out of the system (W)

\( \dot{\mathrm{E}} \) g :

rate of energy generated (W)

\( \dot{\mathrm{E}} \) st :

rate of change of thermal energy stored by the system (W)

qx, qy, qz :

conduction heat rates along X, Y, Z direction (W)

Qconv :

net heat loss through convection (W)

Qrad :

net heat loss through radiation (W)

I:

input current (A)

t:

time taken to heat the sheet metal (sec)

T:

temperature of the sheet metal (°C)

R(T):

resistance of the sheet material as a function of temperature (ohm)

ρ(T):

electrical resistivity of the sheet material as a function of temperature (ohm-mm).

A1 :

cross-sectional area of the sheet perpendicular to the direction of current flow (mm2)

d:

density of the sheet metal (kg/mm3)

Cp(T):

specific heat capacity of the sheet material as a function of temperature (N mm/Kg.°C)

m:

mass of the sheet metal (kg)

q:

rate of heat conduction through a medium (W)

K(T):

thermal conductivity of the sheet material as a function of temperature (W/mm.oC)

T1 :

initial temperature before heating (°C)

T2 :

final temperature after heating (°C)

ΔT:

difference in temperature (°C)

W1 :

thermal work done to raise the temperature of the sheet material (N-mm)

W2 :

mechanical work done during the forming process (N-mm)

W3 :

work done by the forming tool (N-mm)

W4 :

plastic work done up to fracture (N-mm)

Fz :

axial force exerted by the forming tool (N)

σUTS (T):

ultimate tensile strength of the sheet material as a function of temperature (N/mm2)

dt :

forming tool diameter (mm)

\( \overline{\mathrm{h}} \) :

scallop height (mm)

α:

wall angle (°)

\( \overline{\mathrm{z}} \) :

incremental depth (mm)

zh :

total height of the formed component (mm)

z:

initial thickness of sheet metal (mm)

A2 :

tool contact area during forming process (mm2)

\( \overline{\upsigma} \) :

effective stress (N/mm2)

\( \overline{\upvarepsilon} \) :

effective strain

h:

height of the crack (mm)

K:

strength coefficient of the sheet material (N/mm2)

n:

strain hardening exponent

zf :

final thickness of the formed sheet metal (mm)

\( \overline{\upvarepsilon} \) f :

effective fracture strain

εmajor :

Major in-plane strain

εminor :

minor in-plane strain

R:

average value of the anisotropy coefficient

σ1 and σ2 :

principle stresses (N/mm2)

η:

stress ratio

References

  1. Shamsari M, Mirnia MK, Elyasi M, Baseri H (2018) Formability improvement in single point incremental forming of truncated cone using a two-stage hybrid deformation strategy. Int J Adv Manuf Technol 94:2357–2368. https://doi.org/10.1007/s00170-017-1031-5

    Article  Google Scholar 

  2. Bansal A, Lingam R, Yadav SK, Reddy NV (2017) Prediction of forming forces in single point incremental forming. J Manuf Process 28:486–493. https://doi.org/10.1016/j.jmapro.2017.04.016

    Article  Google Scholar 

  3. Zhang X, He T, Miwa H, Nanbu T, Murakami R, Liu S, Cao J, Wang QJ (2019) A new approach for analyzing the temperature rise and heat partition at the interface of coated tool tip-sheet incremental forming systems. Int J Heat Mass Transf 129:1172–1183. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.056

    Article  Google Scholar 

  4. Shi X, Gao L, Khalatbari H, Xu Y, Wang H, Jin L (2013) Electric hot incremental forming of low carbon steel sheet: accuracy improvement. Int J Adv Manuf Technol 68:241–247. https://doi.org/10.1007/s00170013-4724-4

    Article  Google Scholar 

  5. Kim SW, Lee YS, Kang SH, Lee JH (2007) Incremental forming of Mg alloy sheet at elevated temperatures. J Mech Sci Technol 21:1518–1522. https://doi.org/10.1007/BF03177368

    Article  Google Scholar 

  6. Barnwal VK, Chakrabarty S, Tewari A, Narasimhan K, Mishra SK (2017) Forming behavior and microstructural evolution during single point incremental forming process of AA-6061 aluminum alloy sheet. Int J Adv Manuf Technol 39:416–424. https://doi.org/10.1007/s00170-017-1238-5

    Article  Google Scholar 

  7. Nirala HK, Agrawal A (2018) Sheet thinning prediction and calculation in incremental sheet forming. In: Pande S, Dixit U (eds) Precision product-process design and optimization. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore, pp 391–410. https://doi.org/10.1007/978-981-10-8767-7_15

    Chapter  Google Scholar 

  8. Khazaali H, Fereshteh-Saniee F (2018) Application of the Taguchi method for efficient studying of elevated-temperature incremental forming of a titanium alloy. J Braz Soc Mech Sci Eng 40:40–43. https://doi.org/10.1007/s40430-018-1003-1

    Article  Google Scholar 

  9. Najafabady SA, Ghaei A (2016) An experimental study on dimensional accuracy, surface quality,and hardness of Ti-6Al-4 V titanium alloy sheet in hot incremental Forming. Int J Adv Manuf Technol 87:3579–3588. https://doi.org/10.1007/s00170-016-8712-3

    Article  Google Scholar 

  10. Pacheco PAP, Silveira ME (2018) Numerical simulation of electric hot incremental sheet forming of 1050 aluminum with and without preheating. Int J Adv Manuf Technol 94:3097–3108. https://doi.org/10.1007/s00170-017-0879-8

    Article  Google Scholar 

  11. Gupta P, Jeswiet J (2018) Effect of temperatures during forming in single point incremental forming. Int J Adv Manuf Technol 95:3693–3706. https://doi.org/10.1007/s00170-017-1400-0

    Article  Google Scholar 

  12. Vahdani M, Mirnia MJ, Bakhshi-Jooybari M, Gorji H (2019) Electric hot incremental sheet forming of Ti-6Al-4V titanium, AA6061 aluminum, and DC01 steel sheets. Int J Adv Manuf Technol 103:1199–1209. https://doi.org/10.1007/s00170-019-03624-2

    Article  Google Scholar 

  13. Amrut M, Ben S, Ismail S, Kocanda A (2017) Experimental investigations into the effects of SPIF forming conditions on surface roughness and formability by design of experiments. J Braz Soc Mech Sci Eng 39:3997–4010. https://doi.org/10.1007/s40430-016-0703-7

    Article  Google Scholar 

  14. Pacheco PAP, Silveira ME, Silva JA (2019) Heat distribution in electric hot incremental sheet forming. Int J Adv Manuf Technol 102:991–998. https://doi.org/10.1007/s00170-018-03228-2

    Article  Google Scholar 

  15. Grun PA, Uheida EH, Lachmann L, Dimitrov D, Oosthuizen GA (2018) Formability of titanium alloy sheets by friction stir incremental forming. Int J Adv Manuf Technol 99:1993–2003. https://doi.org/10.1007/s00170-018-2541-5

    Article  Google Scholar 

  16. Saidi B, Giraud Moreau L, Mhemed S, Cherouat A, Adragna PA, Nasri R (2019) Hot incremental forming of titanium human skull prosthesis by using cartridge heaters: a reverse engineering approach. Int J Adv Manuf Technol 101:873–880. https://doi.org/10.1007/s00170-018-2975-9

    Article  Google Scholar 

  17. AL-Obaidi A, Kunke A, Krausel V (2019) Hot single-point incremental forming of glass-fiber-reinforced polymer (PA6GF47) supported by hot air. J Manuf Process 43:17–25. https://doi.org/10.1016/j.jmapro.2019.04.036

    Article  Google Scholar 

  18. Wang H, Gu Y, Guo X, Wang H, Tao J, Xu Y (2018) Microstructure and mechanical properties of 2060-T8 Al-Li alloy after warm incremental forming. J Mech Sci Technol 32:4801–4812. https://doi.org/10.1007/s12206-018-0927-9

    Article  Google Scholar 

  19. Sakhtemanian MR, Honarpisheh M, Amini S (2019) A novel material modeling technique in the single-point incremental forming assisted by the ultrasonic vibration of low carbon steel/commercially pure titanium bimetal sheet. Int J Adv Manuf Technol 102:473–486. https://doi.org/10.1007/s00170-018-3148-6

    Article  Google Scholar 

  20. Min J, Seim P, Störkle D, Thyssen L, Kuhlenkötter B (2017) Thermal modeling in electricity assisted incremental sheet forming. Int J Mater Form 10:729–739. https://doi.org/10.1007/s12289-016-1315-6

    Article  Google Scholar 

  21. Magnus CS (2017) Joule heating of the forming zone in incremental sheet metalforming: Part 1. Int J Adv Manuf Technol 91:1309–1319. https://doi.org/10.1007/s00170-016-9786-7

    Article  Google Scholar 

  22. Mohanty S, Regalla SP, Rao YVD (2019) Robot-assisted incremental sheet metal forming under the different forming condition. J Braz Soc Mech Sci Eng 41:74. https://doi.org/10.1007/s40430-019-1581-6

    Article  Google Scholar 

  23. Aerens R, Eyckens P, Van Bael A, Duflou JR (2010) Force prediction for single point incremental forming deduced from experiment and FEM observation. Int J Adv Manuf Technol 46:969–982. https://doi.org/10.1007/s00170-009-2160-2

    Article  Google Scholar 

  24. Atkins AG, Mai YW (1985) Elastic and plastic fracture: metals, polymers, ceramics, composites, biological materials. Ellis Horwood /John Wiley, Chichester

    Google Scholar 

  25. Madeira T, Silva CMA, Silva MB, Martins PAF (2015) Failure in single point incremental forming. Int J Adv Manuf Technol 80:1471–1479. https://doi.org/10.1007/s00170-014-6381-7

    Article  Google Scholar 

  26. Atkins AG, Mai YW (1987) Fracture strains in sheet metal forming and specific essential work of fracture. Eng Fract Mech 27:291–297. https://doi.org/10.1016/0013-7944(87)90147-0

    Article  Google Scholar 

  27. Hill R (1948) A theory of yielding and plastic flow of anisotropic metals. Proc R Soc Lond A 193:281–297. https://doi.org/10.1098/rspa.1948.0045

    Article  MathSciNet  MATH  Google Scholar 

  28. Isik K, Silva MB, Tekkaya AE, Martins PAF (2014) Formability limits by fracture in sheet metal forming. J Mater Process Technol 214:1557–1565. https://doi.org/10.1016/j.jmatprotec.2014.02.026

    Article  Google Scholar 

  29. Sheng ZQ, Mallick PK (2017) A ductile failure criterion for predicting sheet metal forming limit. Int J Mech Sci 27:345–360. https://doi.org/10.1016/j.ijmecsci.2017.05.002

    Article  Google Scholar 

  30. Li Z, Lu S, Zhang T, Zhang C, Mao Z (2018) Electric assistance hot incremental sheet forming: an integral heating design. Int J Adv Manuf Technol 96:3209–3215. https://doi.org/10.1007/s00170-018-1792-5

    Article  Google Scholar 

  31. Ramadass R, Sambasivam S, Thangavelu K (2019) Selection of optimal parameters in V bending of Ti grade 2 sheet to minimize springback. J Braz Soc Mech Sci Eng 41:21. https://doi.org/10.1007/s40430-018-1521-x

    Article  Google Scholar 

  32. Fang Y, Lu B, Chen J, Xu DK, Ou H (2014) Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming. J Mater Process Technol 214:1503–1515. https://doi.org/10.1016/j.jmatprotec.2014.02.019

    Article  Google Scholar 

  33. Ambrogio G, Filice L, Manco GL (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Ann: Manuf Technol 57:257–260. https://doi.org/10.1016/j.cirp.2008.03.066

    Article  Google Scholar 

  34. Khazaali H, Fereshteh-Saniee F (2019) Process parameter enhancement for incremental forming of titanium Ti–6Al–4V truncated cone with varying wall angle at elevated temperatures. Int J Precis Eng Manuf 20:769–776. https://doi.org/10.1007/s12541-019-00097-x

    Article  Google Scholar 

  35. Sakhtemanian MR, Honarpisheh M, Amini S (2018) Numerical and experimental study on the layer arrangement in the incremental forming process of explosive-welded low-carbon steel/CP-titanium bimetal sheet. Int J Adv Manuf Technol 95:3781–3796. https://doi.org/10.1007/s00170-017-1462-z

    Article  Google Scholar 

  36. Amrut M, Ben S, Ismail S, Kocanda A (2017) Experimental investigation and modeling of single point incremental forming for AA5052-H32 aluminum alloy. Arab J Sci Eng 42:4929–4940. https://doi.org/10.1007/s13369-017-2746-1

    Article  Google Scholar 

  37. Zha GC, Shi XF, Zhao W, Gao L, Wu ML (2016) Experimental research of incremental sheet forming based on fastened pre-tensioning. Int J Adv Manuf Technol 82:711–717. https://doi.org/10.1007/s00170-015-7411-9

    Article  Google Scholar 

  38. Duflou JR, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming:formability and accuracy improvement. Ann CIRP 56:273–276. https://doi.org/10.1016/j.cirp.2007.05.063

    Article  Google Scholar 

  39. Honarpisheh M, Abdolhoseini MJ, Amini S (2016) Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current. Int J Adv Manuf Technol 83:2027–2037. https://doi.org/10.1007/s00170-015-7717-7

    Article  Google Scholar 

  40. Shrivastava P, Kumar P, Tandon P, Pesin A (2018) Improvement in formability and geometrical accuracy of incrementally formed AA1050 sheets by microstructure and texture reformation through preheating, and their FEA and experimental validation. J Braz Soc Mech Sci Eng 40:335. https://doi.org/10.1007/s40430-018-1255-9

    Article  Google Scholar 

  41. Honarpisheh M, Mohammadi Jobedar M, Alinaghian I (2018) Multi-response optimization on single-point incremental forming of hyperbolic shape Al-1050/cu bimetal using response surface methodology. Int J Adv Manuf Technol 96:3069–3080. https://doi.org/10.1007/s00170-018-1812-5

    Article  Google Scholar 

  42. Yoganjaneyulu G, Narayanan CS, Narayanasamy R (2018) Investigation on the fracture behavior of titanium grade 2 sheets by using the single point incremental forming process. J Manuf Process 35:197–204. https://doi.org/10.1016/j.jmapro.2018.07.024

    Article  Google Scholar 

  43. Velmanirajan K, Thaheer ASA, Narayanasamy R, Madhavan R, Suwas S (2013) Effect of annealing temperature in Al 1145 alloy sheets on formability, void coalescence and texture analysis. J Mater Eng Perform 22:1091–1107. https://doi.org/10.1007/s11665-012-0358-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mohanraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanraj, R., Elangovan, S. Thermal modeling and experimental investigation on the influences of the process parameters on warm incremental sheet metal forming of titanium grade 2 using electric heating technique. Int J Adv Manuf Technol 110, 255–274 (2020). https://doi.org/10.1007/s00170-020-05851-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05851-4

Keywords

Navigation